

Solar Renovation Concepts and Systems

A Report of Task 20 Subtask F Improvement of Solar Renovation Concepts and Systems November 1999

INTERNATIONAL ENERGY AGENCY Solar Heating & Cooling Programme

Solar Renovation Concepts and Systems

IEA Solar Heating and Cooling Programme Task 20 "Solar Energy in Building Renovation" Subtask F: "Improvement of Solar Renovation Concepts and Systems"

> Technical Report Task 20 STF N12 Edited by Andreas Haller Ernst Schweizer AG, Metallbau

> > November 1999

Abstract

Under the framework of the IEA Solar Heating and Cooling Programme, a Task regarding building renovation was initiated in 1993: "Task 20: Solar Energy in Building Renovation." Within Task 20, Subtask F, "Improvements of Solar Renovation Concepts and Systems," designed and evaluated different solar renovation concepts and systems.

The objective of Subtask F was to document development activities and design strategies with a focus to improve the cost-performance ratio of solar renovation measures.

This report discusses strategies for cost reduction of solar renovation concepts and systems and documents 13 development projects. It contains designs for specific renovation projects, including general concept studies based on housing projects, product developments and research projects. Most of the projects are related to glazed balconies, solar wall heating with transparent insulation, solar thermal collectors, and preheating ventilation air.

Acknowledgement

The Swiss Federal Office of Energy financed the editing and publication of this report and the Swiss contributions, under the contract no. 50'999.

The following persons contributed to the research and writing of the report: Arne Elmroth (S), Elisabeth Kjellsson (S), Hans-Jorg Althaus (CH), Chiel Boonstra (NL), Jan-Olof Dalenback (S), Geurt Donze (NL), Karel Fort (CH), Andreas Haller (CH, editor), Sheila Hayter (US), Olaf Bruun Jorgensen (DK), Micah Sherman (USA), Henrik Sorensen (DK), Karsten Voss (D), Tom Wood (USA).

This report was printed at and is available from

Ernst Schweizer AG, Metallbau Bahnhofplatz 11 CH-8908 Hedingen, Switzerland Phone: +41 (0) 1-763-63-80 Fax: + 41 (0) 1-761- 88-51 E-mail: info@eschweizer.ch

at a price of CHF 50.00 excluding VAT and postage

0 November 1999 IEA (International Energy Agency) - All rights reserved.

Executive Summary

The aim of the Solar Heating and Cooling Programme's Task 20, Subtask F was to report on improved concepts and systems for ongoing renovation projects and development activities during the extension phase of Task 20. These projects should profit from the experiences of previous Task 20 work.

This technical report on Subtask F documents 13 projects in five different fields of solar renovation:

- 1. Glazed balconies
- 2. Solar wall heating with transparent insulation
- 3. Preheating of air for mechanical ventilation systems
- 4. Solar thermal collectors
- 5. Improved use of daylight

The selection of the activities to improve solar renovation represents the current activities in the countries involved in Subtask F. Most studies are focused on the renovation of apartment buildings.

Reference to real world applications is maintained because most of the reported studies stem from real renovation projects. Several studies disclose construction details and are therefore easily adapted to similar situations. More general studies may serve as a starting point for future activities.

Cost was identified as a key barrier for the solar renovation concepts. Under the previous Task 20 work, a wide cost-range was reported for most of the solar concepts. Many of these evaluated solar renovation projects were not cost competitive to that of conventional renovation measures. Therefore, the main goal for Subtask F was to investigate improvements to reduce investment cost and/or increase the cost-benefit ratio.

Possible strategies to reduce costs were identified including:

- Combine solar and non-solar systems
- Allow for the large dimension tolerances of existing buildings
- Focus on simple systems/components
- Focus on standardised solutions
- Improve information dissemination and occupant/owner training
- Avoid requirement of specialised experts for installation and mounting
- Conform to working habits of the craftsmen
- Optimise cost/performance ratio at low cost
- · Make other systems or components redundant avoiding added cost for replacement

A majority of the reported studies combined solar and non-solar systems as a strategy to improve the cost-benefit ratio. This strategy assumes that at least one of the two systems will be or is available at no additional cost. Significant reductions of the investment cost however require much cheaper systems and components. Such a reduction can only be achieved with new product developments. Novel, improved, or much cheaper materials are required. In short: more research for solar energy systems with a focus on cost reduction is needed.

INTERNATIONAL DECKY ALEN Solar Housing & Cooking Program

Table of Content

	Report on Subtask F	1
	troduction	
	roject Selection	2
3 Tł	ne Role of Systems and Components in Task 20	3
3.1	Concepts, systems and components	3
3.2	Cost - a key figure for solar renovation	3
1.3	Task 20 cost reduction strategy and focus	5
1.4	Strategies for improvements for Subtask F	6
4 So	olar Concept and System Development Activities - Summaries	7
4.1	Glazed balconies	7
4.2	Solar wall heating with transparent insulation (TI)	9
1.3	Solar thermal collectors	11
1.4	A ir collector systems	11
1.5	Improved use of daylight	12
1.6	Selected projects outside Task 20	13
5 A	nalysis	16
5.1	Renovation reasons and energy demand reduction	16
5.2	Development	17
5.3	Market aspects	18
1.4	Improvements and innovations	20
1.5	Evaluation of concepts and comparison of the related projects	21
1.6	Projects outside of Task 20	24
6 C	onclusions and recommendations	26
6.1	Conclusions from the analysis of the improved concepts	26
6.2	Recommendations	27
6.3	References	28
	: Catalogue of Concepts and Systems	29
	troduction	29
	verview of Concepts and Systems	30
8.1	Project status and development information	30
8.2		32
8. <i>3</i>	Market aspects	34
0.5 1.4	Innovation and results	36
	atalogue of Concepts and Systems	38
		38 39
9.1 1.2	A dvanced glazed balconies (D)	<i>45</i>
1.2	A dvanced glazed balcony (DK) A dvanced ventilation strategy for glazed balconies (NL)	55
1.3 1.4	Glazed balconies and ventilation systems (CH)	65
1.4	Static shading for TI wall heating systems (D)	73
1.6	Ventilated solar wall heating with TI (CH, D)	79 79
1.7	Low cost TI wall heating system (CH)	85
1.8	Elimination of thermal bridges with TI (NL)	92
1.0	Facade integrated collector system (D)	99
1.10		103
1.11		105
1.12		109
1.12		115
Annex		127
4 MILLON	\	1 4 /

Part I: Report on Subtask F

1 Introduction

Purpose of the report

The Subtask F Technical Report gives an overview of the projects with an emphasis on improved concepts and systems for solar renovation applications undertaken during the final phase of Solar Heating an Cooling (SHC) Programme Task 20.

Background

The process of building renovation presents a good opportunity to increase the future use of solar energy in existing buildings and to reduce energy demand and CO₂ emissions. However, in building renovation the main priorities are usually not solar energy gains and energy conservation. Repair of deteriorated components, preservation of market value of the building, or remodelling to adapt to changed requirements are the usual reasons of renovation projects.

This situation is unfortunate but reasonable because there is a range of aspects that must be improved for solar renovation to become a common practice in the future. The first and primary requirement is the solar concepts must be cost competitive with the conventional renovation measures.

Collaborative work

During 1996 and 1997, as many innovative solar concept studies and system developments focusing on building renovation as possible were collected from six countries. Six experts were permanently, and up to six additional co-workers were temporarily in involved in Subtask F.

Audience

This report is written for persons interested in improving solar energy applications, especially for building renovation. This may include persons responsible for planning and managing R&D as well as product managers of solar systems for the building sector. It can also provide designers and planners of innovative solar systems background information to more insight into technical aspects.

Intended benefit of the report

This report highlights the role of the concepts and systems in the solar renovation process. It provides insight into the cost structure of solar renovation systems and explains a range of strategies for improvements based on the experiences of Task 20 experts. For future projects, the report may help researchers and designers to focus on key aspects that lead to successful market implementation.

Content

The Technical Report is divided in two parts. Part I documents the work of Subtask F including a review of related previous Task 20 activities, draws conclusions, and provides recommendations. Part II consists of the "Catalogue of Concepts and Systems" including the detailed description of 13 projects for improved solar renovation concepts and systems.

2 **Project Selection**

Selection of projects

A number of system development projects lead by industry and research institutes carried out with the involvement of Task 20 experts were selected for documentation under Subtask F. All together, Subtask F documents and summarises 13 different projects in five different fields of solar renovation:

Glazed balconies Solar wall heating with transparent insulation Preheating air for mechanical ventilation systems Solar thermal collectors Improved use of daylight

It is obvious that this project selection is rather pragmatic. The main reasons for this approach are the limited resources of the experts and the limited number of participants. However, in order to provide a more general view, some interesting activities outside of Task 20 are briefly referenced in this report (see section 4.6).

Building application and market focus

The majority of the Subtask F activities focus on the renovation of apartment buildings constructed after the Second World War. In most of the participating countries these buildings represent a considerable potential for energy savings and have similar renovation needs.

Collaborative work within Task 20

From all the different solar renovation concepts evaluated so far within Task 20 the concept of glazed balconies and it's use to preheat air proved to be a common denominator and a topic for collaborative work within Subtask F.

The interest for solar wall heating is still confined to Austria, Denmark, Germany, Norway, The Netherlands, United Kingdom and Switzerland. This lead to a close collaboration between Germany and Switzerland for developing solar wall heating concepts. Solar thermal collector systems and daylighting are both important topics within the IEA SHC Programme, however, within Subtask F, it was not possible to come up with enough projects to initiate any common activities on this topic.

Collaboration with the industry

Most of the subtask F projects were conducted with considerable involvement of industry and/or architects and building owners. The materials supplier together with construction companies mainly drove component and system developments. For concept designs and concept implementations, Task 20 experts worked with architects and building owners on a consultant basis.

Subtask F work

Subtask F started in the beginning of 1997 and ended in December 1998. As the actual technical work for the projects was outside the scope of Task 20, the main activity of Subtask F was to set up a uniform documentation format for the design and development projects. The project descriptions are concatenated in Part II of this report, the "Catalogue of Concepts and Systems" section. The documentation of the concepts and systems was the responsibility of the involved experts, and other Task experts did a peer review on the concept descriptions.

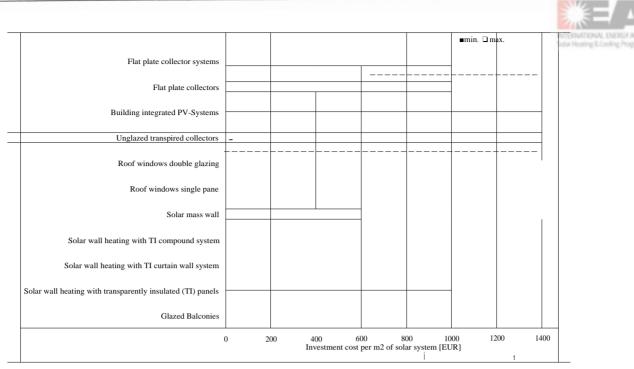
3 The Role of Systems and Components in Task 20

3.1 Concepts, systems and components

The three terms "concept," "system," and "component" are used frequently in the following section. These terms are explained to avoid confusion and to highlight the important messages and lessons learned in Subtask F work:

- Concept refers to the idea of an operation or a service, for example, "solar preheating of air for a mechanical (exhaust) ventilation system." Improvements of solar concepts mainly refer to new combinations and new synergism between different systems and components of a building.
- A system is the entity of physical items that are required for a basic operation or service, such as a solar domestic hot water (DHW) system.
- A component is referred to as a part of a system, such as the flat plate collector for a solar DHW system.

Besides the basic components, a system usually requires additional parts for integration into an existing building. Such parts and components are usually non-standardised and are designed individually for each project. Because of the limited flexibility of existing buildings - compared to new building designs - these requirements are more important and more prominent for renovation situations than for new buildings.


3.2 Cost - a key figure for solar renovation

Besides the energy gains of solar systems and their potential to reduce fossil fuel consumption, the important key figure is the total cost of the system. For solar energy in building renovation this is usually the marginal cost of the solar measure and the operational cost over its lifetime.

The case studies evaluated under Subtask A, "Evaluation of Existing Building Applications," in the beginning of Task 20 [1] came up with the cost of several different solar systems implemented in renovation projects before 1993. The evaluation showed a wide variety in investment costs, energy performances, annual operational costs and simple payback times for the 13 solar renovation applications (see Figure 3-1). The reasons for this spread were:

- Differences in building standards
- Different type and size of solar measures
- Different quality levels
- Systems with high and low solar coverage

Thus, the number of examples was too small allowing concluding hard evidence concerning the typical cost of specific solar renovation concepts.

Figure 3-1: Investment cost of solar renovation concepts found under Subtask A (in C/m2 solar system)

Under Subtask B, "Improved Solar Renovation Concepts," general information about the cost of different solar concepts and systems were collected. Table 3-1 gives a summary of the findings at that stage of Task 20.

System cost	Average cost (€)	per
Component cost		
with added features		
Glazed balconies	250	m ³ volume
high quality folding doors	550	m ² glazing
conventional folding doors	300	m ² glazing
simple sliding doors	240	m ² glazing
Solar wall heating with transparent insulation		
Stick system	700	$m^2 TI$
Sealed gazing element for stick system	200	$m^2 TI$
Curtain wall facade elements	420	$m^2 TI$
and movable solar gain control	170	$m^2 TI$
and fixed solar gain control	80	$m^2 TI$
Low performance system	250	$m^2 TI$
Roof windows	90 - 350	m ² glazing
Unglazed transpired collector	40 - 160	$m_{\rm W}^2$ collector
Integrated PV systems	1300	^k " peak
PV facade module	1000	m_{W}^{2} module
Roof system with standard modules	7 000 — 10 000	^k peak
Solar Collector Systems		
Small DHW systems	1450	m ² collector
• Large DHW systems (low solar coverage)	750	m ² collector
Small combi-systems	1800	m ² collector
Glazed flat plate collector	100 — 450	m ² collector

Table 3-1: Market price of selected solar systems and components for renovation (price level of 1996, various sources).

Table 3-1 again reflects the variations in component and system cost. Except for solar collector systems, these figures are all lower than the specific cost found in Figure 3-1. This leads to the following assumptions - some of which are common sense, but still interesting:

- Large systems are more cost effective than small ones in terms of cost per m² solar system.
- Low solar coverage leads to more cost-effective systems
- System cost reflects the fabrication cost planing and implementation cost are not included.
- Most of the projects evaluated under Subtask A include some opportunity costs (more expensive planing, adapted components for architecturally appealing solutions) but also received open and hidden subsidies by suppliers, etc.
- The integration cost of solar DHW system is already included in today's market prices. It reflects the extended experience with this technology.

Conclusion

Even if the system and component cost are known, solar renovation cost for most solar systems may vary widely depending on various parameters and circumstances.

3.3 Task 20 cost reduction strategy and focus

The main focus of Task 20 Subtask C, "Design of Solar Renovation Projects," was on the building renovation process as a whole. The intention was to use the potential of active, passive, and hybrid solar energy systems to solve the problems of a building that lead to the need of a renovation. The experts based the rationale for this focus on several assumptions:

- In renovation projects, the equivalent energy cost of the solar system is usually calculated from the marginal cost. Conventional renovation measures for building preservation unrelated to energy demand reduction may be deducted from the total solar renovation cost.
- Using standardised solar systems and well known concepts at marginal cost will potentially lead to lower costs for solar in renovations than in new buildings.
- The complexity of adaptation and the restrictions of the existing building situation may be reduced to a minimum by evaluating and integrating solar concepts at an early stage of the renovation design.
- Additional benefits of solar systems to the energy demand reduction (e.g. comfort) can be quantified further reducing the cost for solar systems in renovation.

Lessons learned from Task 20 Subtask C and E

Again, the number of case studies within Subtask C and E of Task 20 was too limited to come up with concise conclusions regarding solar renovation systems and components. The studied and applied systems are also in very different development stages. However, we can identify some general trends from the design of the renovation projects commonly discussed in Subtask C and Subtask E work:

- Solar systems show potentially an improved cost-performance ratio when applied as integrated parts of renovations. However, compromises and limitations in renovation situations may reduce the performance and the possible use of energy gains of solar systems compared to the optimal integration in new buildings.
- Most of today's available solar systems and components were designed without detailed attention to construction and installation constraints for later building integration (exception: roof module collector, see [2]).
- Standardised systems and components are cheaper but require costly adaptations in renovation situations.
- Systems are often too complex for typical renovation situations. This leads to additional costs for planning, installation and on-site adaptation.
- High investment costs of solar systems become more prominent in the budget of a building renovation compared to the situation of new building design. Tight budgets for

renovation projects may not allow the implementation of the solar systems even if the cost/performance ratios of the solar measures are acceptable compared to the conventional measures.

Detailed information about the renovation projects can be found in [3] and [4].

Conclusions

Compared to the initial aim of Subtask C we have to admit that early consideration of solar concepts in the renovation design may be necessary, but is not sufficient or does not guarantee low (equivalent energy) cost solutions.

3.4 Strategies for improvements for Subtask F

Future advancements of solar systems and components must consider strategies for improvement. Optimisation efforts may use the (non-exhaustive) guidelines of Table 3-2.

Aim	Measure	Additional Effect
Improve cost/performance ratio	Combine solar and non-solar systems	Increases customer acceptance
Optimise for renovation situation	Various, e.g. allow adapting for the typical tolerances in dimensions	Reduces planning and installation costs
Reduce planning costs	Focus on simple systems/components	Increases acceptance of planners and designer
	Focus on typical solutions, adopt established systems to renovation situations	Improves quality, improves market acceptance
	Improve information and training	Increases acceptance and quality
Optimise for site work	Avoid requirement for specialised professionals on site	Reduces labour cost
	Sconform to working habits of the	Reduces labour cost, improve quality, reduce failure cost
Reduce investment costs to become attractive for low budget projects	Optimise cost/performance ratio at low cost level	Increases acceptance, increases market potential
"Tunnelling the cost barrier"	Make other systems or parts of it redundant thus avoiding cost for replacement	Reduced maintenance cost for redundant parts

Table 3-2: Component and system design strategies for improved solar renovation.

4 Solar Concept and System Development Activities - Summaries

All of the projects reported under Subtask F have adapted one or more of the strategies listed in Table 3-2. The following sections gives an overview of the projects that are documented in more detail in Part II "Catalogue of Concepts and Systems".

4.1 Glazed balconies

4.1.1 Advanced glazed balconies (D)

Concept: Based on a renovation project for a 14storey apartment building in Freiburg, Fraunhofer ISE investigated the glazed balconies and the combination of glazed balconies with an exhaust air ventilation system. One focus of this investigation was to find the optimal glazing system for the balcony concerning energy savings, daylight, user comfort, and noise. The second focus was to potentially reduce the energy demand by combining the glazed balcony with the central exhaust air system. For the glazed balcony, a relatively low air change rate of 0.6 to 1.0 per hour during the heating season was assumed. Simulations showed that the heat loss from the room adjacent to the balcony could be reduced with the optimal balcony glazing by 30% compared to a conventional renovation (wall

Apartment building in Freiburg, D, before renovation

insulation). Simulations of coupling the balcony to the exhaust air system showed somewhat mixed results. The heat energy demand of the apartment can be reduced significantly, but this reduces also the mean air temperature in the glazed space. For technical evaluation and user acceptance tests, several different glazing systems have been set up at the site.

Results: The project will be realised at cost comparable to conventional renovation projects in the vicinity. The cost for the balconies is compensated by keeping the facade part between the glazed balcony and apartment as they are. For tenants, a glazed balcony is more valuable as a buffer space than as an improved insulation standard.

Project status: The renovation of this building is planned to conclude in the first quarter of 1999. Several similar buildings in the vicinity may be renovated in the same way in the near future due to a municipal area development plan.

Reference: Part II "Catalogue of Systems and Concepts" - Concept no. 1

4.1.2 Advanced glazed balconies (DK)

Concept: In the case of total refurbishment of apartment buildings, it is worth the effort to renovate and glaze existing aligned balconies for use as additional heated living space. This requires super insulating windows and insulated parapets. The situation is different for external balconies: It is usually not possible to turn this type of balcony in a heated space without increased energy losses.

The renovated building with glazed balconies (left)

balconies are converted to an unheated glazed space with simple glazing constructions to reduce transmission losses. In cases of existing mechanical ventilation systems additional ventilated solar walls in the parapet can be established at almost no extra cost. In cold periods with small or no solar gains the fresh air will be preheated in the radiator integrated into the fresh air inlets. In addition, a demand controlled moisture regulated ventilation system exhausts air from the kitchen and the bathroom.

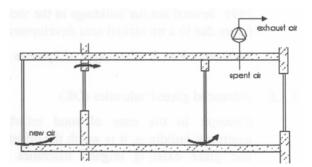
Results: The project shows the different concepts of glazed balconies. Additional simple air collectors in the parapets were evaluated on a concept level, but not modelled in details.

Project status: The renovation project is concluded. Detailed monitoring and evaluation is ongoing until spring 2000. Furthermore, the project has received an award in an architecture competition with focus on building integrated solar design.

Reference: Part II "Catalogue of Concepts and Systems" - Concept no. 2

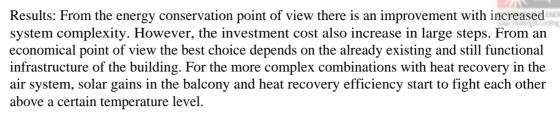
4.1.3 Advanced ventilation strategy for glazed balconies (NL)

Concept: Dutch building codes require minimum ventilation rates per apartment. For small apartments, this leads to relatively high air change rates. In order to reduce the transmission losses, the concept of glazed balcony profits from its integration in the ventilation concept for preheating the fresh air. The exhaust ventilation in bathroom, toilet, and kitchen create an under-pressure in the apartment and the glazed balcony. Wind-pressure-independent vents then control the air inflow. By using this principle is it possible that 50 - 75% of the fresh air enters through the balcony.


Results: A glazed balcony can reduced transmission losses of the apartment by up to 20 kWh per m^2 heated floor area and heating season. Preheating of ventilation air in glazed balconies increases savings by an additional 10 kWh per m^2 of an average apartment of 70 m^2 heated floor area.

Project status: Conceptual design for the ventilation strategy is concluded, prototypes of the involved air vents were evaluated.

Reference: Part II "Catalogue of Concepts and Systems" - Concept no. 3


4.1.4 Glazed balconies and mechanical ventilation systems (CH)

Concept: A glazed balcony may be combined in various ways with different ventilation strategies of a building or an apartment. Several combinations different with HV systems were investigated in a study based on two real renovation projects. These combinations included a simple exhaust system, ventilation system with heat recovery, and domestic hot water production using the exhaust air as a source for a heat pump. Based on the real apartment building's possible

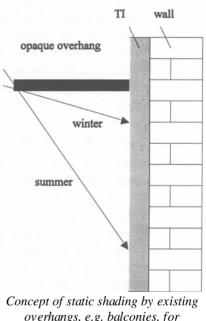
The graph shows one of the investigated concepts to combine glazed balconies and ventilation systems.

installation, solutions to place vent and air ducts were also investigated and the cost for the different systems evaluated. Besides the criteria energy gain and cost, the influence of the different concepts on the comfort situation were of main interest.

In all variations preheated air from the balcony serves about 50% of the fresh air resulting in a balcony air change rate between 0.6 to 1.2 per hour during the heating season.

Project status: Concept study is concluded. One of the evaluated versions is installed in a renovation project. Evaluation of the comfort situation in the balcony is in planning but results were not available by the end of Task 20.

Reference: Part II "Catalogue of Concepts and Systems" - Concept no. 4


4.2 Solar wall heating with transparent insulation (TI)

4.2.1 Static shading system for TI wall heating (D)

Since 1996, a composite transparent insulation system for solar wall heating has been on the market. Up to now, this system lacks an integrated solar gain control. Limiting the application to less than 30% of the facade area prevents overheating in summer. This also limits the potential solar gains and contributions to the space heating in wintertime.

The study aims to identify the potential to extend this limit by using existing overhangs with other primary usage (like balconies). This will allow expanding the potential of solar wall heating systems without additional cost for solar gain control. The outcomes of this work are guidelines for using existing overhangs for gain control of solar wall heating systems in general. It may further lead to the design of cost effective and attractive overhangs.

Results: For the same gain load in summer, the active area of the solar wall heating with fixed overhang may be expanded to over 40% of the south oriented facade area.

overhangs, e.g. balconies, for seasonal gain control of solar wall heating systems.

Project status: Project concluded with a set of design guidelines.

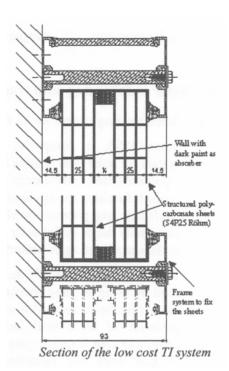
Reference: Part II "Catalogue of Systems and Concepts" - Concept no. 5

4.2.2 Ventilated solar wall heating with TI (CH, D)

Gain control of high performance solar wall heating systems by variable shading devices contribute up to a third of the total investment cost of this solar system. It is also responsible for a major share of the operational cost. In this project the concept of solar gain control by ventilation is combined with transparently insulated facade elements that are industrially fabricated and available on the market. The focus of this research and development activity is on the optimal use of the physical properties of different absorber materials, the technical solutions for the air openings, and the cost-effective integration of the concept into the

existing product. Within the time frame of Task 20 only the modelling and measurement of the physical properties was possible.

Results: Natural ventilation is an effective way to control gains of solar wall heating system. Some key design rules must be followed. The crucial parts are good insulated and airtight covers for the ventilation openings at sufficiently low cost.


Project status: The research project is planned to conclude with the design of a preliminary product for a demonstration project in the third quarter of 1999.

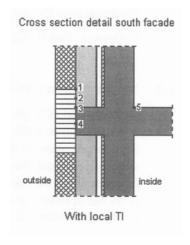
Reference: Part II "Catalogue of Systems and Concepts" - Concept no. 6

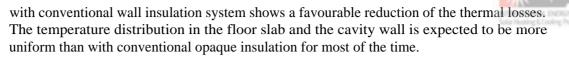
4.2.3 Low cost TI wall heating system (CH, D)

Concept: Early experiments with transparent foils and sheets as transparent insulation for solar wall heating system showed a too low energy transmittance at feasible insulation levels for central and northern European climates. In the meantime materials technology in the area of transparent plastics has improved with anti-reflex coatings, UV-protection coatings, etc. This project evaluated the potential of recently introduced multi-layer polycarbonate sheets to be used as transparent insulation for solar wall heating. Because of the mechanical structure of these sheets there is a significant potential for cost reduction for the facade system.

Results: The evaluation of the building physics showed that these products might be used as TI with sufficiently low u-value and sufficiently high transmittance for solar wall heating. The overall performance is lower than for glazed systems with honeycomb or capillary TI materials. Applied in

limited areas to avoid overheating in summer, the specific cost including installation may be less than $250 \notin per m^2$.


Project status: Industry project, further activities may not be disclosed.


Reference: Part II "Catalogue of Concepts and Systems" - Concept no.7

4.2.4 Elimination of thermal bridges with TI (NL)

Concept: The end planes of concrete floors of typical housing construction in the Netherlands are not insulated. Compared to the usual cavity walls, these end planes act as severe thermal bridges. Even with an additional external layer of insulation, this construction detail remains a weak spot. The study investigates the prospects of using a transparent instead of an opaque insulation for these horizontal parts of the facade. A suitable facade insulation system is already on the market.

Results: Evaluation of the thermal impact of a transparent insulated floor slab in combination

Project status: The theoretical investigations are concluded. A demonstration project is still missing.

Reference: Part II "Catalogue of Concepts and Systems" - Concept no. 8

4.3 Solar thermal collectors

4.3.1 Facade integrated collector system (D)

Concept: The concept is based on the combination of conventional wall insulation with a low temperature thermal solar collector for DHW. The technical solution proposes to integrate a plastic piping system in the outer plaster layer of the insulation and finishing system. The dark coloured plaster acts as an unglazed thermal collector and the piping system is separated from the wall by the insulation layer.

Results: This system is best suited for residential buildings on south west to west oriented walls and connected to a central DHW system for preheating. A solar fraction of 25% for the annual DHW demand is realistic. The economic evaluation shows that the upper cost limit for the facade integrated solar collector may be around \in 50 per m².

Project status: The performance of a prototype system was measured during 1999.

Reference: Part II "Catalogue of Systems and Concepts" - Concept no. 9

4.4 Air collector systems

4.4.1 Solar air systems with building double envelope (CH)

Concept: Collector-warmed air is circulated through the cavity of a second opaque building envelope. By this measure, heat losses may be reduced to very low levels. The system works with very high efficiency due to the low return air temperature. In summer, the hot air may be used for preheating domestic hot water in an air-to-water heat exchanger.

Results: The ideal second skin construction is constructed of a 50 to 60 mm cavity covered with 100 mm thick insulation. The optimal

ratio is 5 to 1. For this case, solar gains of about 100 kWh per m^2 air collector per heating season in the Swiss midland are possible.

Project status: The project resulted in a set of guidelines. The renovation project was not realised because of cost reasons.

Reference: Part II "Catalogue of Concepts and Systems" - Concept no.10

Sketch of the building with direction of the airflow

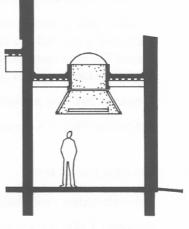
4.4.2 Solar air systems and double envelope (S)

Concept: The basic concept is identical to the previous concept. In order to reduce complexity and cost, the air-water heat exchanger for preheating domestic hot water is not

included. This study focuses on the optimal airflow and the air distribution in the additional cavity wall. For the designs, a set of rule of thumbs that resulted from IEA SHC Programme Task 19, "Solar air systems," were used.

Results: The detailed construction plans for the renovation of an apartment block were created and accepted by conventional contractors to offer tenders on a regular basis within reasonable cost limits. This is a very promising step to bring the concept to the market.

Project status: The contractors issued tenders in spring 1999. Renovation work: summer/fall 1999. Evaluation: heating season 1999/2000.


Reference: Part II "Catalogue of Concepts and Systems" - Concept no. 11

4.5 Improved use of daylight

4.5.1 Roof windows with light duct (US)

Concept: The concept is based on the combination of advanced roof windows and automated lighting systems control. This combination of systems and components provides the opportunity to decrease energy consumption of building lighting systems and increase occupant comfort. The specific components are solar tracked roof windows with appropriate glazing materials and daylight distributing systems to help collect, transport, and distribute the light.

Results: In the case of the US NREL Visitor's Centre, lighting electrical loads are expected to be reduced by more than 20% to 30%, depending on the location of the light ducts. This can only be achieved with extended control systems.

Gallery Skylight

Project status: Analytical evaluation has been concluded. Construction was delayed until other building renovation activities are initiated.

Reference: Part II "Catalogue of Concepts and Systems" - Concept no.12

4.5.2 Improved daylight for multi-storey housing (DK)

Concept: Large dwellings in inner cities very often have core areas without access to daylight. Innovative light collecting and light guiding equipment can improve the appearance and quality of these parts of the building. The installation of these systems is proposed in combination with internal refurbishment. New or additional channels for sanitary or power installations may also be used as light paths from the roof to the building core. A Heliostat system on the roof collects the direct sunlight. Direct (beam) sunlight is available during about 50% of the time. For the rest of the time, these systems can not provide a reasonable amount of light and need artificial backups.

Results: A model of a renovation project in Copenhagen was set up and evaluated. The measurements of light densities and distribution qualities show that minimum required levels can be achieved.

Project status: The evaluation of the concept is concluded. The refurbishment of the housing block including the installation of the light collecting and guiding systems was finalised in summer 1999.

Reference: Part II "Catalogue of Concepts and Systems" - Concept no. 13

4.6 Selected projects outside Task 20

4.6.1 Thermotropic shading for gain control of solar wall heating with TI

Above a certain temperature, thermotropic layers switch from a transparent state to a milky, light scattering state. This transformation is reversible. There is a potential to use such materials as solar gain control for solar wall heating systems with TI. Integrated in front of the transparent insulation, the thermotropic layer may switch as a function of the ambient temperature thus reducing the solar gain in summer to avoid overheating. One of the most important aspects of this self-controlled system is a sufficiently long lifetime of the thermotropic characteristic.

Results: Thermotropic materials with a switching temperature of 27°C are currently evaluated. The switching capability ranges from 85% transmission in the clear state to 35% in the diffuse, light scattering state. No results about the ageing tests have been disclosed.

Ref.: Dr. Werner Platzer, Fraunhofer Institute for Solar Energy Systems, D-79100 Freiburg, e-mail: platzer@fhg.ise.de.

4.6.2 Transpired air collector for preheating ventilation air

Building regulations in Canada require a certain amount of overpressure in the stairways of high rise apartment buildings. This is provided by central ventilation systems on the top of the buildings. It usually requires a large amount of preheated air to maintain the overpressure by the ventilation system and therefor a lot of heat energy.

When the brick facade of these buildings need be to renovated, transpired air collectors instead of the usual metal cladding might cover closed areas to the full height. The transpired air collector is directly connected to the ventilation system on the top of the building thus providing preheated fresh air at no extra energy expenses.

An example is the Windsor Housing Authority (Windsor, Ontario, CAN), the world's tallest solar collector according to the contractor company.

Ref.: Conserval Engineering Inc., Downsideview, Ontario, Canada. Internet: http://www.solarwall.com.

4.6.3 Low-cost air collector system for space heating and DHW

In this concept the conventional building envelope covered by tempered single glazing forms the solar air collectors. South oriented roof and wall areas can be used. No special materials, such as selective absorbers, are used to enhance the solar absorbance thus reducing cost and enhancing the architectural appearance. Driven by a central ventilator the air circulates in the cavities between walls and roof and the glazing. A conventional air to water exchanger preheats domestic hot water. Selected hollow structures for floors and walls form heat storage and heat radiators for space heating. In summertime these radiators are bypassed.

The concept has been implemented during a renovation of a small single-family house near Lucerne, Switzerland. The building is of wood construction and was erected in 1945/46. A total renovation including new bathrooms and a new heating system was needed. Air collectors that are 45 m^2 are formed by the south oriented roof and a part of the south facade and produce 7 000 kWh of useful heat energy. The old and insufficient wood floors were replaced by a hollow structure covered with a layer of concrete to form the storage and low-temperature radiator. The renovated building has a low total energy demand of less than 45 kWh per m² per year. A single wood stove provides auxiliary space heating. An electric heater backs up the solar domestic hot water system. The solar systems were implemented at

marginal cost of less than 5% of the total renovation cost. The renovation project received the Swiss Solar Award 1998.

Ref.: Andreas Gütermann, AMENA AG, Steinberggasse 2, CH-8402 Winterthur; fax. +41 (0)52 214 14 44, e-mail: amena.ag@energienetz.ch.

4.6.4 Solar recladding of housing blocks – the Glasgow example

Since 1992 researchers at the Mackintosh School of Architecture, Glasgow and the Napier University, Edinburgh, both Scotland, have evaluated a range of different solar systems suited for housing renovation:

- Slated roofs as solar air collector
- Transpired plate solar collectors for preheating ventilation air
- Sunspaces for preheating ventilation air
- Timber window with integrated air collector

Together with other measures to improve energy efficiency and to solve comfort problems these systems were proposed in a multi-stage renovation package for multi-storey apartment buildings.

The combined solar-insulative cladding is estimated to reduce the annual space heating load and water heating significantly to less than 50% of the original demand. To overcome some of the constraints of investment costs the authors propose a phasing, hence spreading costs over a fairly long period.

Ref.: C.D.A. Porteous, Mackintosh University of Architecture, Glasgow School of Art, Glasgow, Scotland, e-mail: c.porteous@gsa.ac.uk.

4.6.5 Hybrid PV / Thermal concepts

Decentralised ventilation systems using new and reliable DC-motors make it possible to be driven directly by photovoltaic modules.

About 3 m² of amorphous PV modules per dwelling cover 33% - 50% of the electrical energy for such a ventilation system by solar energy. In a retrofit activity these modules can be integrated into the facade. The PV-modules may also be utilised at the same time for preheating ventilation air. Examples showing that extra cost for PV modules at current price levels reach 250 \in per m² facade. As the cost for PV-modules is expected drop by 50% within the next 5 years, simple payback times of 6 -7 years may be achieved.

Ref.: Lisbet Michaelsen, "PV-VENT: Low-cost energy efficient PV-ventilation in retrofit housing", Proceedings of the 2nd World Conference on PV-SEC, 1998.

The renewal of a (south oriented) roof creates an ideal opportunity for solar renovation for solar electric and thermal cogeneration. With the appropriate mounting systems solar electric modules can replace the traditional roofing materials. In the air channel between the new roof membrane and the substructure warm air is created and can be collected by natural or forced convection at the ridge. Several demonstration projects exist and are evaluated.

Typically the thermal power of such a roof is about two to three times higher than the electrical power. This thermal energy can be used to preheat DHW in an air-to-water heat exchanger, to preheat ventilation air, or directly for air heating systems.

Ref.: Mario Posnansky, "The importance of hybrid PV-building integration" for PV-HYBRID-PAS seminar 1997, Brussels. Contact: Atlantis Energy Ltd., CH-3012 Bern, phone: +41 31 300 32 20, fax.:+41 31 300 32 30. An additional example is the Task 20 solar renovation demonstration project "The Yellow House". See [3] and [4].

4.6.6 Flexible facade system (DK)

Solar systems usually cover only a part of a building facade. Especially in inner city areas solar applications may only be applicable in the upper levels. To keep the additional costs for such solar facade parts in a whole facade renewal as low as possible a flexible facade system has been developed. The system allows construction of extensions and buffer spaces and to add solar components for low or moderate additional cost. The facade system is intended to dramatically reduce design and construction time. The construction of joints, air inlets, feed through for pipes and cables are solved in a standardised way. The flexible facade system is designed to comply with the architectural requirements for inner city renewal. A demonstration project is carried out in 2000.

References:

- "Urban Ecology Working Conference Catalogue on ecological systems". SBS Urban Renewal, Copenhagen, Denmark, 1997
- Flexible Facades, Urban renewal project, Copenhagen, DK
- osterbo, Vejle, DK (EU DGXVII THERMIE project FLEXREN).

Contact: Olaf Bruun Jorgensen, Esbensen Consulting Engineers, Tel: +45 33 26 73 00, fax: +45 33 26 73 01, e-mail: o.b.joergensen@esbensen.dk

5 Analysis

5.1 Renovation reasons and energy demand reduction

Renovation reasons

The renovation reason is the starting point for all projects in Task 20. It is also the starting point for the review of the Subtask F projects.

The analysis of the project reports (see Part II) shows that facade renewal is the common denominator for most of the improved solar renovation concepts documented. This includes the cure of structural problems, thermal improvements and upgrading of the appearance.

Besides facade renewal, thermal comfort issues per se are a very prominent reason for renovation (mould, moisture, draught). They are to a large extent related to excessive energy losses. They can be solved by improving the thermal characteristics of the building envelope and by improving control of the air change rate.

Focus of the solar concepts

The focus of most of the improved solar renovation concepts is on the thermal aspect. The other needs for facade renovation, like the cure of structural problems, comfort, etc. come as a secondary benefits.

In summary, Subtask F concepts cover the following renovation needs:

- Renewal of the facade (structural maintenance, thermal improvement, upgrade appearance)
- Extension of the living space (seasonal or all year)
- Shield from (traffic) noise
- Added value for the occupants
- Improvement of air quality
- Renewal of the domestic hot water (DHW) system
- Improve visual and thermal comfort
- Re-roofing
- Reduction of heat energy demand

Energy savings and solar energy gains

Several projects reported under Subtask F confirmed the results of Subtask B regarding energy savings and solar energy gains. However, compared to Subtask B most projects documented in this report are much more detailed, based on real renovation situations and evaluated for different climatic situations. Table 5-1 summarises energy savings and solar energy gains. Energy savings are defined as reduction in transmission losses due to the lower U-value of the renovated building or building part because of the application of the solar system. The solar energy gains are evaluated as the energy demand reduction by the effects of the solar radiation.

These energy figures were not available for all concepts and projects at the time of reporting. Some projects did not evaluate the solar gains specifically.

Glazed balconies and mechanical ventilation systems: The useful solar gains of the glazed balcony can be improved when designed in combination with mechanical ventilation systems. Within a certain range the improved solar gains are almost independent of the air change rate in the balcony.

Solar renovation concepts	Energy savings	Solar energy gains
Glazed balcony and mechanical ventilation	$10 - 20 \text{ kWh/m}^2 *$	$5 - 10 \text{ kWh/m}^2 *$
Solar wall heating with Transparent Insulation	25 — 60 kWh/m ² **	$20 - 100 \text{ kWh/m}^2 **$
Solar thermal collector (facade)	Not applicable	Figures not available
Double envelope with air collector	10 - 20	kWh/m ² *
Daylight	Not applicable	Not evaluated
* Per m ² of heated floor area	*** In combination with	th advanced light control

** Per m² of collector area

Table 5-1: Typical energy savings and solar energy gains of the solar renovation concepts evaluated under Subtask F. For the concept of the double envelope with air collector, energy savings and solar energy gains can not be differentiated.

- Solar wall heating with TI: All improved solar wall heating systems with TI report to be able to compensate the transmission losses. The amount of energy savings depends on the level of transmission losses before the renovation. The solar gains depend strongly on the performance of the TI system.
- Solar thermal collector: Basic component evaluation showed that the efficiency of the unglazed facade collector is about 25% lower than for a state-of-the-art flat plate collector. Further, the lower insulation level leads to an increased heat loss factor and problems with uniform flow distribution need to be solved as well. These factors make this collector design more vulnerable to radiation levels and operating temperatures. Solar energy yields may be best on south-west facades and for preheating applications. The approved characteristics of the collector were not available at the time of reporting.
- Double envelope with air collector: The solar collectors gain up to 100 kWh per m² collector are and heating season. The double envelope can reduce the transmission losses by 10 to 20 kWh per m² of heated floor area and heating season.
- Daylighting: Very impressive is the relative energy demand reduction for lighting in the renovation project of the NREL Visitor's Centre. Constructed in 1993, the building was not equipped with the latest energy savings technology from the beginning. The measures except for the light ducts may also be rather unspectacular and implemented with off-the-shelf technology. However, this project shows the huge unexploited potential for improvements in this field in the USA.

5.2 Development

Development status

The development status of the various projects includes the whole range from qualified renovation design to demonstration project, and from evaluated prototype to new product development. It reflects on one hand that we have two different types of projects (renovation projects and R&D projects) and on the other hand that schedules of the different projects are unrelated.

Industrial involvement

It was an important aim of Subtask F to reach a high level of involvement of the related construction industry. In Table 5-2 the consultants (architects, energy and HVAC consultants) are not specifically listed. These experts were involved in most projects. The involvement of the industry ranges from the usual product information and design support to joint product development. In 6 projects, manufacturers were designing prototypes for evaluation and demonstration. Four projects lead or are planned to lead to new products from the building industry.

			Type of	industry in	volvement	- Petto Solar
Concept group and project number		Product information and support	Regular contracting / supplier	Prototype design	Demonstration project	Product or system development
Glazed balcony and mechanical ventilation	1					
	2	Section 1				
	3					
	4					
Solar wall heating with Transparent Insulation	5					
	6		1. J			
	7					
	8				1 1 1 1 1 1 1 1 1	
Solar thermal collector (facade)	9	NU SUSSI	20104143			
Solar air collector systems	10					
	11					
Daylight	12					
	13			04 (NA) D	S	

Table 5-2: Industry involvement in the projects reported under Subtask F (horizontal hatching: involve-ment up to reporting date; vertikal hatching: planned follow up activity)

Design tools

In most of the projects sophisticated design tools have been used:

- Multi-zone building simulation tools
 - Ashling 5.1
 - CAPSOL
 - DOE2.1E
 - TRNSYS 14.2
 - Tsbi 3
- Solar air systems / ventilation systems
 - MVRM 5.0 (multi- zone ventilation)
 - TransAir (simulation of air collector systems based on TRNSYS)
- Two-dimensional heat transfer
 - THERM
 - SECTRA
- Daylight
 - Adeline / Radiance
 - DAYLIGHT
 - Lumen Micro 7.5

Especially the evaluation of the combination of glazed balconies and mechanical ventilation systems showed the lack of suitable and easy to use (integrated) design tools. An evaluation of glazed spaces requires multi-zone models with correct distribution of solar gains and heat transfer by air. Furthermore, the impact on the daylight properties needs also to be considered and requires today a different set of tools.

5.3 Market aspects

A more intense collaboration with industry requires researchers to have an idea about the practical relevance of the R&D and demonstration projects. For some of the projects, the information is based on the results evaluated during Subtask B (for example glazed balconies, double envelope with air collector). For some concepts, new market evaluations have been made (for example "low-cost" solar wall heating). However, it must be mentioned

that the information about market aspects is generally of lower quality than the technical information in this Technical Report.

Building types

Solar energy renovation applications to support space heating and domestic hot water heating is primarily suited for residential buildings. Table 5-3 shows that the projects focus on apartment buildings. The reports show that some of the heating applications may also be well suited for other residential buildings such as detached or row single family houses, industrial halls, and public service buildings.

The potential for improved use of daylight is mainly in the area of commercial and industrial buildings. The concept of light guiding to illuminate building cores may improve all type of buildings with large depth and is not restricted to a certain utilisation of the building.

Solar renovation concepts	Apartment building	Commercial & office building	Single family home	Industrial building	Public Service buildings
Glazed balcony and mechanical ventilation					
Solar wall heating with Transparent Insulation					
Solar thermal collector (facade)				10 25102 51	
Solar air collector systems				SUTTO-STATE	
Daylight					

Table 5-3: Application focus on building type (horizontal hatching: main focus; vertical hatching: possible applications)

Additional benefits

In the project reports found in Part II additional benefits of the improved concepts are listed with respect to the main goal(s). It must be noted that the additional benefits of one project may be the primary goal of the other, and vice versa (see section 5.1).

Application potential

Experts working on the projects were asked to come up with ideas about the application potential for their concepts. The results of this investigation are rough estimates and usually reflect the technical potential. The figures are also related to the respective national markets where the project was conducted. The real markets in the different countries are strongly dependent on the cost of the solar systems and are even more difficult to evaluate.

Cost target

Compared to the studies in Subtask B, "Improved Solar Concepts," cost is a much more important topic for the projects documented under Subtask F. Most of the projects have a very clear cost target as a goal of the improved concept. Table 5-4 gives an overview of these aims. It is important to highlight that for some of the projects it is not appropriate to give absolute costs but rather refer to marginal costs compared to conventional renovation measures. Some figures refer to a specific renovation project and may not be valid for another renovation situation.

Solar renovation concepts	Cost targets (may be different within the same concept depending on the system's performance)	Estimated for country
Glazed balcony and mechanical	€ 6000 – 7000 per glazed balcony, plus	D/CH/DK
ventilation	\notin 700 – 1000 for coupling glazed space to the mechanical ventilation system	СН
	Additional \in 300 - \in 600 per m ² of glazed area	NL
Solar wall heating with	No additional cost for use of static shading	All
transparent insulation	Cheaper than conventional movable blinds	CH
r	$< \in 280$ per m ² of "low cost" solar wall heating system	CH/D
	$< \in 140$ per m ² for elimination of thermal bridge	NL
Solar thermal collector (facade)	<€ 50 per m ² of "low cost" facade collector (marginal cost)	D
Solar air collector systems	<€ 20 per m ² double envelope facade <€ 100 per m ² air collector	S
Daylight	No representative figures available	US/DK

Table 5-4: Cost target of the improved solar renovation concepts of Subtask F

5.4 Improvements and innovations

Innovative character of the projects

The aim of Task 20 was to investigate the use of solar energy for building renovation with the solar systems and components available on the market. Research on materials and the development of novel concepts and systems was not meant to be within the scope of this Task. Thus, most of the projects documented under Subtask F have used strategies for improvements within the set scope.

However, the analysis of the projects designed under Subtask C and reported under Subtask E shows that within this scope, only limited improvements of the cost-benefit ratio of the solar energy gains and energy savings for renovation applications are possible. Because of these experiences, there are also a few studies included in Subtask F dealing with research and product development (concepts 6, 7 and 9). This approach has the potential to explore novel solutions using less and/or cheaper materials or addressing completely different needs.

Applied strategies

The experiences from the previous activities of Task 20 led to the proposal of strategies for improvements for solar renovation concepts and systems (see section 3.4). Table 5-5 shows the improvement strategies applied for the projects reported under Subtask F.

- Most of the reported projects focus on cost-benefit optimisation by combining solar and conventional systems. This is a successful strategy if at least on of the system is required and funded for other reasons than solar energy gains.
- Two projects focus explicitly on renovation by either taking advantage of the existing building structure or propose new solutions to solve problems of wide spread construction detail of existing buildings (no. 5 and no. 8).
- Two projects try to overcome the high investment costs of solar systems to increase the market for the solar concept. However, this strategy does not automatically improve the cost-benefit ratio (no. 7 and no. 9).
- One project succeeded in meeting the cost targets by compensating some of the investment cost and making the conventional renovation obsolete (no. 1).

IN THE

	e lodi	-	lan e .da	Improveme	ent strategy	in the second	INTERNATIONAL
Concept group and project number	r fitin olda olda	Improve cost/performance ratio (system combination)	Optimise for renovation	Reduce planning cost	Optimise for construction site	Reduce investment cost for low budget situations	Tunnelling the cost barrier
Glazed balcony and mechanical ventilation	1 2 3						
Solar wall heating with	4						
transparent insulation	6 7 8						
Solar thermal collector (facade)	9				el stato as		
Solar air collector systems	10 11				0000056-96	dimine	
Daylight	12 13						

Table 5-5: Strategies applied in the documented projects of Subtask F (horizontal hatching: main strategy; vertical hatching: secondary strategy)

5.5 Evaluation of concepts and comparison of the related projects

5.5.1 Glazed balconies and mechanical ventilation systems

Four projects are documented using this concept. However, they represent three distinct ideas, though they use basically the same concept.

Two projects (concept no. 1 and no. 4) start with the glazing as a measure to solve thermal bridges of the existing balcony structure in the realm of a facade renovation. Both projects use airtight structures with — at least — double-glazing. Relatively low basic air change rates are planned (0.6 per hour). The combination of the glazed balcony with a mechanical ventilation system to preheat the fresh air helps to make better use of the solar gains in the balcony.

The cost for the glazed balcony is not different as in previous projects reported under Task 20 (≤ 6000 to 7000 per apartment). The additional useful energy gains will slightly improve the equivalent energy cost for the glaze balcony. The marginal cost for this measure must be covered by the added value for the apartment (increase of rent) and the building as a whole (improved occupation rate).

Both projects show that the cost for a mechanical exhaust ventilation system in addition to a glazed balcony may be covered by the additional solar energy gains. More sophisticated ventilation systems may result in equivalent energy cost comparable to that of conventional renovation measures. Concept no. 4 shows that the cost may be only twice as much as the cost for heat energy generated by fossil fuel. This does not take into account the increased comfort and air quality.

In renovation situations where a mechanical exhaust systems is already installed and a glazed balcony will be constructed for non-solar reasons, the required additional efforts to guide a significant part of the fresh air through a glazed balcony is very limited. The additional cost for the required measures will be covered by the solar gains in most of the cases.

Depending on the airflow schemes, a reduction in the mean air temperature and hence in the comfortable use of the balcony space must be taken into account.

It is worth mentioning that the concept to combine glazed balconies and mechanical ventilation systems favours – as all such concepts – the cold and sunny climate (for example, the alpine climate).

The Danish project (concept no. 2) strategy is to choose between different designs depending on the layout of the existing balcony:

- For a aligned balcony the focus is on the expansion of the living space of apartments by including existing balcony into the renovated building envelop. With low-e glazing and well-insulated parapets the overall transmission losses can be reduced and heat energy demand decreased even with the expanded heated floor area. Preheating of the apartment ventilation air is included in a simple air collector structure in the parapet. To avoid draught and cold air, the air inlet is integrated into the convector of the radiator.
- For a projecting balcony a simple glazing system is promoted for cost reasons. This space can only be used for a limited period of time and is used to preheat ventilation air during he heating season.

For both situations, a humidity controlled mechanical ventilation system (exhaust from kitchen and bath) is installed in the apartments to maintain a good indoor climate.

Dutch building code regulations require a minimum ventilation rate per apartment. In the example project this results in an air change rate of 1.5 per hour. Therefore the project focus on the preheating of the ventilation air to reduce the air change losses as much as possible (concept no. 3). The type of glazing influences the energy demand reduction. The difference between simple single glazed systems and high quality low-e glazing systems are about 10 kWh per m2 heated floor area and heating period. The decision between the solutions will, in practice, probably depend on the cost and therefore on the layout of the balcony.

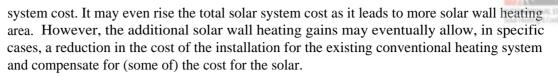

Concept	Type of balcony design and use	Ventilation system	Air inlet	Air change rate of the apartment	Air intake through balcony
German concept	Well insulated solar heated glazed space	Fixed rate central exhaust ventilation	By air valves to balcony	nominal 0.6 h ⁻¹	50% of total air change volume $(\sim 60 \text{ m}^3)$
Danish concept	Well insulated heated living room	Moisture controlled ventilation	Behind radiators or integrated in convectors	0.2 – 1.2 h ⁻¹ average 0.4 h ⁻¹	75% of total air change volume
Dutch concept	Different qualities of solar heated glazed spaces	Fixed rate individual exhaust ventilation	Wind-pressure- independent vents in balcony and exterior walls	0.8 – 1.3 h ⁻¹	30% to 50% of total air change volume
Swiss concept	Well insulated solar heated glazed space	Various systems	Fix openings to balcony and air valves between balcony and apartment	nominal 0.6 h ⁻¹	50% of total air change volume (~ 60 m ³)

Table 5-6: Comparison of the different concept variants for the glazed balcony and mechanical ventilation system

5.5.2 Solar wall heating

Again there are four projects dealing with the same solar concept with very different objectives.

The goal of the German concept no. 5 is to use the existing building structure as solar gain control of the solar wall heating for no additional cost. First, this does not lower the solar

Concept no. 6 is a research and development project with the aim to use integrated natural ventilation as solar gain control. It is an attempt to create a more versatile solution to the problem of overheating in summer. The direct outcome of this project will not have much impact on the investment cost. The goal is not to increase the cost compared to a system with venetian blinds as solar gain control. The maintenance cost may be lower with this solution. The main direct impact would be a more pleasant and architectural acceptable solution. In addition, this concept has the potential to lead to more cost efficient solution when the principle of overheat control can be applied to cheaper solar wall heating systems.

Concept no. 7 is a German/Swiss feasibility project of industrial partners. This study project takes advantage of developments of materials technology. It opens the opportunity to build solar wall heating at much lower investment costs. Though solar gains are reduced, the cost performance ratio is still improved compared to the high performance glazed systems. In addition, a transparent insulation system based on multi-layer sheets is also better suited for handling in parts at the construction site. Thus, complete prefabrication is not required. For a good market acceptance, it must be well suited for combination with the conventional opaque insulation systems and suitable for mounting by the facade insulation contractors.

Concept no. 8 focuses on solving construction problems. The specific and widely used construction technique of a certain period remains a weak spot for thermal losses with conventional renovation measures. The concept to compensate thermal bridges by transparent instead of opaque insulation is a truly innovative solar renovation concept. Unfortunately, the currently available products are still too expensive by a factor of 2 for a broad market acceptance. The question remains, if the cost problem may be solved with a dedicated version of the product just for this application. There may be a certain potential just by means of the economy of volume.

5.5.3 Air collector systems and facade insulation

Both reported projects (Concepts no. 9 and 10) are based on the current state-of-the-art knowledge established under IEA SHC Programme Task 19 "Solar air heating systems". These projects are also contributions to Task 19.

However, the contents of these two studies are complementary. The Swiss project concentrated on the optimisation of the air hydraulic system. The solar renovation of the building used for the study will unfortunately not be realised. The Swedish study focused on the constructive details. The hydraulic aspects are designed by expert's knowledge without further investigations. This solar air system will be built as part of a large renewal project.

Unfortunately, none of the project cost figures were available by the time of reporting. There is no indication yet on the cost effectiveness of this concept compared to conventional facade insulation. For the Swedish project it was only known at the time of reporting, that several contractors were able to submit tenders that are within the budget limits of the renovation project.

5.5.4 Solar thermal collectors (facade)

Concept no. 9 proposes an unglazed collector integrated into the finishing layer of the facade insulation. Unglazed collectors with non-selective absorbers have some tradition, especially for swimming pool applications. Recently, unglazed collectors with highly selective surface

were successfully evaluated in roofs and facades for preheating domestic hot water. The main advantage is the lower cost of the collector field.

The evaluation results on solar energy gains by the proposed unglazed collector with nonselective surface are unfortunately not available at the reporting date. However, from the prototype evaluation, high sensitivity to wind and ambient temperatures can be expected. Therefore, the solar gains of this renovation concept will also be very dependent on the system design (mean operating temperature of the collector).

For solar renovation this is a very promising system if the target for the marginal cost of less than \notin 50 per m² can be reached.

5.5.5 Daylight optimisation in renovation

The two documented concepts on improving daylight utilisation follow very different approaches.

Concept no 12 documents a complete renewal of the lighting concept using different measures. The goals are the reduction of the electrical energy consumption by improved control and additional use of daylight with the help of special skylights. The results in terms of reducing the consumption of electrical energy are impressive.

However, the report highlights the complexity of the task of a light remodelling of an existing building. Especially the required structural changes (roof windows) may be costly. Its impact to the thermal characteristics of a building must be carefully considered. The example shows, however, that there is a positive balance between gains and losses.

There are no economical aspects reported, but it is not expected that the reduced electricity bill will cover the required investments. On the other side, the gains in visual comfort may have much a more economical overall impact.

It shows also that with an intelligent design there are many opportunities for daylight instead of artificial light. It seems that the proposed solar concepts are best suited for large low-rise buildings as most of the measures use some type of skylights. Thus, there is a large market especially in the USA, Canada and Australia.

Concept no. 13 proposes a much more limited concept to improve the use of daylight in a renovation context. The idea of bringing light, amenity and visual comfort, into the dark central parts of a larger building is intriguing. It is also an adaptation of the Heliostat application known from public spaces (shopping malls etc.) to dwellings. The differences may come with the distribution in the dwelling. The report falls somewhat short on the analysis where and how to use this – sometimes highly – fluctuating light in a housing situation.

The proposal is also based on a highly technical installation with computer controlled sun tracking. systems etc. This may be acceptable for a commercial building with professional maintenance personnel. Whether or not such aspects may reduce the market changes is unclear.

5.6 Projects outside of Task 20

Section 4.6 discusses several ideas and concepts developed outside of IEA SHC Programme Task 20 that are related to solar renovation. The concepts and projects in section 4.6 may not be exhaustive and other developments not earmarked specifically for renovation may also be applicable to existing buildings. However, it is interesting to note that – with two exceptions – all these concepts deal with solar preheating of ventilation air. Some systems use dedicated

absorbers and others use the combination of passive or active solar systems to co-generate warm air for preheating or directly for air heating.

6 Conclusions and recommendations

6.1 Conclusions from the analysis of the improved concepts

Concepts and projects

During the two years of Task 20 extension, detailed information on 14 projects for improved solar renovation concepts were collected under Subtask F. None of these projects were under direct control of the IEA SHC Programme. Task 20 was not in the position to co-ordinate the schedules of these projects. Some of the projects are still ongoing at the time of reporting. The results presented in this technical report therefore have a snap shot character.

Renovation reasons and additional benefits

Most of the investigated projects focused on the renovation of apartment buildings. And for most of the projects facade renovation is the rationale to implement the solar concept. With the combination of solar and non-solar renovation measure more of the potential additional benefits can be harvested in the same renovation project.

Energy impact

The Subtask F studies confirmed the results concerning energy demand reduction and solar energy gains from the simulation studies under Subtask B "Improved Solar Concepts".

Industrial involvement

The industrial involvement during this phase of Task 20 was significant. Four projects lead or are planned to lead to product development by the industry.

Application potential

For some of the concepts the application potential investigated under Subtask B are still valid. All proposed concepts have in common that the technical potential is very big. But the real markets of today are very small or not even developed.

Cost target

For most of the projects the experts have a clear idea of the cost target to be reached for the project. However, it is not always clear what the market impacts will be if these goals are achieved.

Design tools

For the same type of design evaluation a whole range of different tools were used during Subtask F work. Most of the projects were also required to use several tools for the same renovation concept. Subtask F showed again that building renovation with solar concepts and systems might add to the complexity of renovation projects.

Improvements and innovation

All projects reported under Subtask F made use of one or more of the improvement strategies identified in section 3.4. In general, under Subtask F various new concepts and systems are reported that may lead to promising solutions in the future. However, the potentials of these strategies have not been fully exploited in the 13 projects.

Concepts and solutions

The various projects exploring the concept of combining glazed balconies and mechanical ventilation systems show that basic concepts can lead to very different solutions and technical systems depending on the border conditions related to national codes and building practices. However, there are many common problems that need to be solved for most of the reported concepts and systems independent of national peculiarities.

The review of a set of solar renovation projects outside of IEA Task 20 shows that we did not cover the full range of concepts. Notably other types of solar air heating systems and cogeneration of electricity and heat (PV / thermal) may be important additional concepts with a high application potential for solar renovation.

6.2 Recommendations

Gain more detailed market knowledge

Applied research and development activities to improve solar renovation concepts will profit very much from a better and more detailed understanding of the market needs and market barriers.

Design guidelines are required

Unlike as for most conventional building renovation practices, there are no rules available to help planers and architects to solve their problems quickly and efficiently. Especially for the combined solar and non-solar renovation concepts, good design guidelines are necessary in order to be accepted for wide application. The complex set of design tools used in the projects will not be acceptable by regular planers and architects.

More focused R&D activities

Most of the reported projects start from a specific renovation project. This guarantees a high level of practical value of the study. On the other side, this may blur the more general context of the problem and the solutions seem somewhat arbitrary.

A more detailed analysis for the various technical concepts in its renovation context may lead to new and standardised solutions. Future developments should focus on the following aspects:

- Application specific solutions: Optimisation of solar systems for specific existing construction details and renovation problems.
- Building type specific solutions: Optimisation of solar concepts for specific building types.
- Identification of best case situations for cost effective solar renovation concepts and systems. This may lead to cost effective basic solutions (technology platforms) with adaptations for the real life variants.
- Identification of cross-technology application problems or cost factors in order to concentrate on basic solutions to be used by various concepts and systems.
- There is a large potential for other solar renovation systems that have not been addressed by Task 20 and may be important in the future, such as other concepts for solar preheating of air and co-generation of electricity and thermal energy in the facade and the roof.

More demonstration projects and co-operation with the building industry

Further demonstration projects including detailed monitoring and evaluation are still required. And last but not least, there is still need for closer co-operation with the building industry.

6.3 References

- [1] Jan-Olof Dalenback, "Solar Energy in Building Renovation", article published in Energy in Buildings, 24, (1996), p.39 50, Elsevier Science.
- [2] IEA Solar Heating an Cooling Programme, Task 20 "Solar Energy in Building Renovation", Solar Collectors, Glazed Balconies, Transparent Insulation, James & James (Science Publishers) Inc., London, 1997.
- [3] Olaf Bruun Jorgensen, "Solar Renovation Demonstration Projects A Technical Report of IEA Solar Heating and Cooling Programme, Task 20 Subtask C", Esbensen Consulting Engineers, Copenhagen, 1998.
- [4] Karsten Voss, "Solar Renovation Demonstration Projects: Results and Experiences", James & James (Science Publishers) Inc., London, 1999.

Part II: Catalogue of Concepts and Systems

7 Introduction

Subtask F "Improvement of Solar Renovation Concepts and Systems" of IEA SHC Programme Task 20 "Solar Energy in Building Renovation" is an extension activity to the originally planned work of the Task. The aim of this Subtask is the evaluation and documentation of ongoing national activities on solar renovation with focus to improved concepts.

These activities are usually part of national solar renovation demonstration projects, international demonstration projects or research and development projects with contributions from industry. The Catalogue of Concepts and Systems documents only projects from the participating countries. Neither the type of concepts nor the variation of systems documented is therefore exhaustive.

Some of these concepts are still under evaluation, others will be, or are already implemented. Depending on the level of industrial involvement some ideas may lead to improved products.

Content

The overview section to the catalogue provides a comparative overview of the concepts, systems and components discussed and will lead to the specific concept of interest.

The system and concept section contains 13 reports of development projects in a uniform reporting format: The reporting format is structured in three sections and contains the respective information depending of the status of the project:

- General project information including specification, development status and market potential
- Concept evaluation including modelling information, evaluation results and conclusions
- Prototype construction or full scale installation including evaluation and/or monitoring results and conclusions

Audience

The intended audiences of this catalogue are:

- Fellow researchers in and outside of the IEA Solar Heating and Cooling Programme. The concepts may indicate further potential for improvements and promising working areas.
- Government decision-makers. To be used as a guideline for further demonstration projects.
- Companies of building components. To be used as a guideline for improved or new products.
- Planners and engineers in the building construction sector. To be used as reference for novel concepts to be adapted and further improved.
- Municipalities and private building owners. To be used as an inspiration for renovation projects.

The Catalogue of Concepts is part of the technical report on IEA Task 20, Subtask F.

8 Overview of Concepts and Systems

The concepts discussed in Subtask F originate either from real renovation project or industrial development activities. They are therefore based on realistic situations or on a market oriented aims.

Table 8 - is a list of the projects and Table 8-2 gives a first overview of about the status of he projects.

Table 8-3 gives an overview of the renovation reasons and summing the potential energy savings and solar energy gains.

Table 8-4 sums up the market aspects of the components and systems: Building type, additional benefits besides solving the basic renovation problem(s) and energy demand impact.

Project No.	Name and contributor (countries in brackets)	Short description
1	Advanced glazed balconies (D)	Combination of glazed balconies and mechanical exhaust system in a 14-storey apartment building.
2	Advanced glazed balcony (DK)	Glazed balcony optimised for energy demand reduction and solar gains in a multi-storey apartment renovation project.
3	Advanced ventilation strategy for glazed balconies (NL)	Optimised combination of glazed balconies and exhaust ventilation for Dutch apartment buildings.
4	Glazed balconies and ventilation systems (CH)	Evaluation of glazed balconies and various ventilation schemes for apartment buildings based on real examples.
5	Static shading for TI wall heating systems (D)	Optimal use of existing local shading elements for the solar gain control of solar wall heating systems with TI.
6	Ventilated solar wall heating with TI (CH,D)	Evaluation of the potential of natural ventilation for solar gain control instead of blinds etc for solar wall heating systems with TI.
7	Low cost TI wall heating system (CH,D)	Evaluation of transparent multi layer sheets to be used as TI for solar wall heating systems.
8	Elimination of thermal bridges with TI (NL)	Critical thermal bridges in the facade can be eliminated effectively with transparent insulation using moderate insulation layer dimensions.
9	Facade integrated collector system (D)	Evaluation of flexible piping integrated in the plaster of a wall insulation system provides low cost collector system for water preheating.
10	Solar air – double envelope (S)	In a renovation project solar heated air is directed into the cavity between the existing facade and a new layer reducing the transmission losses of the building by solar means.
11	Solar air system with building double envelope (CH)	Evaluation of the optimal hydraulic concept for solar air heated double envelope facades.
12	Roof windows with light ducts (US)	Optimisation of the use of artificial and natural light in a large office/public building.
13	Improved daylight for multi- storey housing (DK)	Evaluation of the application of light guiding concepts known for commercial buildings to housing situations.

Table 8-5 shows the innovative goals and the results of the projects.

Table 8-1: List of Subtask F projects

Concept group, pro and country of orig		umber	Development Status	Industry involved and type of involvement	Design tools used in the project
Glazed balcony and mechanical	1	D	Demonstration construction completed Building under evaluation	Manufacturer of glazed balcony systems and ventilation systems: regular contractors	TRNSYS 14.2, Radiance, THERM (2-dim. heat flow)
ventilation	2	DK	Demonstration construction completed Building under evaluation	Facade manufacturer and manufacturer of glazed balcony systems (design, development) Regular contract basis	Tsbi 3C, Adeline / Radiance, DAYLIGHT
	3	NL	Conceptual design Prototype components evaluated	Manufacturers for ventilation systems: product development	MVRM 5.0 (multi- zone ventilation) Tsbi 3/TRNSYS
	4	СН	Qualified concepts for all variants Demonstration project for one variant under evaluation	Manufacturers for glazed balconies and ventilation systems: regular contractors	Proprietary tool based on spreadsheet technique, TRNSYS 14.2
Solar wall heating	5	D	Qualified concept	TI system manufacturer	TRNSYS 14.2
with Transparent Insulation	6	CH D	Qualified concept Prototypes under evaluation	Metal facade manufacturer: prototype and system development	TRNSYS or TrnsAir type may result from the project
	7	CH D	Qualified concept Prototype evaluated	Manufacturers of facade insulation system, metal facade and structured sheet: Product development	Proprietary energy balance evaluation tool from Fraunhofer-ISE
Roca wang palayah	8	NL	Qualified application concept	Manufacturer of TI system: product information	CAPSOL (multi-zone heat transfer) SECTRA (2-dim. heat transfer)
Solar water collector systems	9	D	Evaluated prototype Demonstration project under evaluation	Manufacturers of facade insulation system, and of plastic capillary piping: product development	TRNSYS 14.2
Solar air collector systems	10	S	Qualified concept and system model	Facade construction company: ventilated – facade development	TrnsAir (TRNSYS extension)
	11	CH	Preliminary design for a renovation project constructed in August 1999	Building contractor	TrnsAir (TRNSYS extension)
Daylight	12	US	System performance characterisation R&D under way to look at integrated solutions Skylights and control commercially available	Manufacturer of skylight, and lighting control: product information and supplier	Lumen Micro 7.5 (light analysis) DOE-2 & Visual DOE 2.6 (energy analysis) Physical model
guid yatoo?	13	DK	Qualified renovation design Technical components are available on the market	Manufacturer of the Heliostat system: product information and supplier	Radiance Physical model

8.1 Project status and development information

Table 8-2: Overview of the project status at the time of reporting, the industry involvement and design tools used

Energy savings (reduced transmission losses by Solar energy gains (utilised energy the renovation measure) produced by the solar system) Heat energy demand reduction from 100 kWh to 50 kWh per m^2 and heating season (calculated values, total renovation). Energy savings and solar energy gains from the balcony were not specifically evaluated. 900 to 1400 kWh per apartment and heating 1100 to 1600 kWh per apartment and season (calculated values). heating season (calculated values). Poor ventilation (air quality problem) Heat energy demand reduction of 30 kWh per m² heated floor area and heating season (calculated values for an apartment size of 70 m²). Solar energy gains were not specifically evaluated. Heat energy demand reduction of 15 to 20 kWh 5 to 15 kWh per m² heated floor area and Extension of apartment area / living space per m² heated floor area and heating season for heating season for typical apartments. typical apartments. Reduction of transmission losses of 30 to 50 kWh per m² of TI covered facade, depending on the state of the existing wall. Solar gains were not specifically evaluated. Reduction of transmission losses of 30 to 50 Solar gains of 20 to 50 kWh per m² of kWh per m² of TI covered facade, depending on covered TI facade area per heating season. Renewal of DHW system (for design option) the state of the existing wall. For thermal collector design option: 100 to 150 kWh per m² of facade area per year. Reduction of transmission losses of 40 to 70 kWh per m² of TI covered facade, depending on the state of the existing wall. Solar gains were not specifically evaluated. Poor local insulation with possible Reduction of transmission losses of up to 35 Solar gains of up to 10 kWh per m of kWh per m of TI covered floor edge per TI covered floor edge per heating heating season. season.

Renovation reasons, energy savings and solar energy gains 8.2

Cold bridge problems

High energy demands Unattractive apartments Unattractive architecture

(Traffic) noise problems

Energy conservation

Facade renovation

Facade degradation High energy demand

Low thermal comfort

Facade insulation

moister problem

Energy conservation

Upgrading exterior

CH Facade renovation Facade insulation

Unpleasant appearance Facade renovation

Hygienic aspects (mould) Facade degradation

As above plus poor ventilation

Upgrading of existing settlement

Reduction of energy demand

Concept group, project number | Renovation reasons

D 1

DK

NL

CH

D

CH

D

D

NL

2

3

5

6

7

8

and country of origin

Glazed balcony

and mechanical

Solar wall heating

with Transparent

Insulation

ventilation

Table 8-3: Renovation reasons, energy savings and solar energy gain

Concept group, project number and country of origin			Renovation reasons	Energy savings (reduced transmission losses by the renovation measure)	Solar energy gains (utilised energy produced by the solar system)	
Solar water collector systems	9	D	Facade degradation High heating energy demand Low thermal comfort High energy demand for DHW	Transmission losses are determined by the insulation layer and not significantly influenced by the solar absorber layer	Solar energy gain results from testing available but not yet in a published form (diploma work).	
Solar air collector systems	10	S	Bad condition of external building skin High energy demand for space heating Moisture and/or mould problems	Compensates part of the thermal heat loss, approximately $10 - 20$ kWh per m ² heated floor area.	No additional solar gains as no heat exchanger loop for DHW is planned.	
	11	СН	Deteriorated facades Poor thermal insulation New facade cover with thermal insulation	Reduction of transmission losses of 15 to 20 kWh per m ² double envelope per heating season.	Solar energy gains are mainly harvested during summer time for preheating DHW. The amount has not been evaluated in this project.	
Daylight	12	US	Decrease energy use for lighting Increase occupants visual comfort Conventional re-roofing Energy-efficient lighting upgrade	Around 20% electrical energy savings in a typical office building - mainly by advanced lighting control.	Daylight compensates up to 30% of the electrical energy in building areas improved with skylights and light ducts.	
Solar wall heading	13	DK	Supplement to any major renovation of the building interior	Energy saving is of secondary relevance	Not evaluated in general – depends on too many individual parameters.	

Table 8-3 (cont.): Renovation reasons, energy savings and solar energy gains

8.3 Market aspects

Concept group, project number and country of origin		umber	Building type	Additional benefits	Application potential	Cost target in Euro (€)
Glazed balcony and mechanical ventilation	1	D	Residential housing blocks	User acceptance due to added space External noise reduction More attractive apartments for letting	For special balcony situations were costs are compensated by avoided conventional measures. No quantity estimations.	Cost must be within the budget for the avoided conventional renovation measures. (cost of demonstration project < \notin 7000 per apartment)
	2	DK	Multi-storey houses Detached houses Row houses	Increased living area More attractive apartments/building for letting	10% to 15% of multi-storey housing stock in Denmark. Technical potential: 20% of all renovated housing stock in Denmark.	Less than \notin 6700 per balcony (experience based on a demonstration project).
	3	NL	Pre-war apartment block requiring new balconies Post-war apartment blocks that need upgrading	Solved maintenance problems Improved architectural image Enhanced use of space Improve property status	Not evaluated for NL.	Marginal cost of \notin 300 to \notin 600 per m ² of balcony envelope area seems acceptable.
	4	СН	Apartment buildings with balconies and mechanical ventilation systems	Improved comfort by controlled air flow in the apartment	Subset of the potential for glazed balconies, only, Quantity not further estimated.	Marginal cost of \notin 700 – 1000 per apartment are acceptable for measures to use solar gains of the glazed balcony to preheat fresh air.
Solar wall heating with Transparent Insulation	5	D	Residential buildings with south oriented, high density (> 1200 kg/m ³) walls without existing insulation	Increased comfort	Technical potential (suitable buildings with existing overhangs): Approximately 80 000 m ² TI facade per year (A, CH, D).	No additional cost for situations with existing overhangs.
	6	CH D	Apartment buildings Office buildings (with multi- functional facade systems)	Improved comfort	Technical potential as for other solar wall heating systems with TI. (Current market volume is $1000 - 3000 \text{ m}^2$ in A, CH, DE per year.)	Cost for ventilation control must be less than for the conventional solar gain control systems such as blinds ($< \in 100 / m^2$).
•	7	CH D	Single family home Apartment building Industrial hall, storehouse Public service building	Improved comfort, especially when applied to the external walls of bathrooms etc.	The technical potential are the south oriented, unshaded and sufficient high density mass walls of most massive buildings (more than 500 000 m ² per year in A, CH, D)	Cost target of the system is $\notin 280$ per m ² of facade area for standardised elements of around 5.5 m ² (2 m width and one storey height).

Table 8-4: Summary of the market aspects

Concept group, project number and country of origin		Building type	Additional benefits	Application potential	Cost target	
Solar wall heating with Transparent Insulation	8	NL	Buildings with non insulated cavity walls with exposed floor slabs	Thermal comfort Improved architectural image	Large theoretical potential also for east and west oriented facades. About 10 % of the total conventional compound insulation market in NL.	The Dutch market would accept cost of \in 140 per m ² where the actual cost is about \in 230 per m ² .
Solar water collector systems	9	D	Residential buildings with west or south-west oriented external walls Buildings with central DHW system	Not yet determined	Not yet determined; depends on the cost/performance ratio compared to state-of-the art solar collector systems.	Additional cost of \in 50 per m ² compared to a conventional insulation and facade finishing system.
Solar air collector systems	10	S	Small to medium size multifamily houses Small office buildings	Increased thermal comfort	Technical potential in Sweden for double envelope: 1 000 000 m ² (total existing building stock).	Marginal cost (compared to conventional facade renovation) should amount to $\epsilon \sim 100$ per m ² or $\epsilon 20$ per m ² facade in order to be interesting.
	11	СН	Apartment buildings with poorly insulated mass walls	Thermal comfort Preheating of DHW	Technical potential for double envelope in Switzerland is several 100 000 m ² per year.	Market potential and acceptable cost not evaluated.
Daylight	12	US	All buildings Specially suitable for daytime occupied commercial or industrial buildings	Improved occupant's visual comfort resulting in increased productivity.	High: Most of the commercial buildings in the US have interior spaces that do not profit from daylight.	Not applicable in a generalised manner.
	13	DK	All buildings with large distances from the facade to the core	Improve visual comfort Daylight spaces provide a more friendly impression to the occupants.	Not evaluated	Depends on the building situation. Investment costs must be covered by the increased building value (rent) over a systems lifetime of 20 – 25 years.

Table 8-4 (cont.): Summary of the market aspects

8.4 Innovation and results

Concept group, project number and country of origin		Main innovation goals Reported results		Comments	
Glazed balcony and mechanical ventilation	1	D	Economic system optimisation	The total investment of \notin 7650 per apartment (balcony and ventilation system) is comparable to conventional renovation measures. Calculated energy savings are approximately 4 000 kWh/a per apartment. With 5% interest rate and 20 years lifetime (annuity of 0,08) this result in \notin 0,15 per kWh.	It is a good result to reach the cost level of conventional renovation per saved energy unit.
	2	DK	Energy savings Improved comfort Low sensitivity of energy demand concerning user behaviour	Preliminary monitoring show significant energy savings Improved visual and thermal comfort Improved daylight conditions Cost target has been reached	Successful implementation of the glazed balcony renovation concept with systems optimised for the specific situations. The combination with mechanical ventilation system is not implemented.
	3	NL	Ventilation concept with low dependency on user behaviour	Conceptual design based on evaluated ventilation components	The evaluation has shown that there is a potential for more robust renovation designs with new but already available components.
	4	СН	Improved solar gains by combination of existing systems	Improved gains of 20 to 35 kWh per m ² heated floor area per heating season (calculated values, depending on HV system). Cost calculation shows equivalent energy cost between \in 0,11 and \notin 0,14 per kWh at different investment levels.	The calculated improvement in solar energy gains is significant but needs to be verified in reality.
Solar wall heating with Transparent Insulation	5	D	Improved summer comfort (with solar wall heating)	For the same area of solar wall heating, the summer gains are reduced by 40%. For the same amount of solar energy gains during December the summer gains may be reduced by approximately 30%.	Example of a "simple" concept taking advantage of the existing situation that improves the use of solar energy without additional cost.
	6	CH D	No external movable parts for gain control (of solar wall heating system)	Natural ventilation of absorber during off heating season resulting in total energy gains of less than 12%. This is sufficiently low for most sensible large area solar wall heating applications.	Although the evaluated technique may improve the acceptance of solar wall heating the potential to lower the cost by this means are not clear, yet.
	7	CH D	Reduction of investment cost and equivalent energy cost for solar wall heating gains	Investment cost below \notin 200 per m ² solar wall heating (compared to \notin 400 per m ² for reference system). Heat energy gains of 70 kWh/a per m ² solar wall heating result in equivalent energy cost of \notin 0,25 per kWh (compared to \notin 0,30 per kWh for reference system)	This project shows that developments in materials technology can be an important driver for cost reduction on the component level and for system cost optimisation

Table 8-5: Main innovation goals and achieved results of the projects

Concept group, project number and country of origin		Main innovation goals	Reported results	Comments	
Solar wall heating with Transparent Insulation	8	NL	Adaptation of a solar concept (solar wall heating) to solve thermal bridge problem	The evaluation shows that the cold bridge can be fully eliminated.	Because of the potential of this concept further cost and system optimisation would be worthwhile.
Solar water collector systems	9	D	Low cost system	Target of additional cost of \in 50 per m ² facade for the solar collector. The project was not in the stage to prove the reach of this aim.	Unglazed and non-selective solar absorbers for water heating must have real cheap investment cost to be viable in central European climate.
Solar air collector systems	10	S	Optimisation of system parameters (design guidelines)	Technical and constructive details have been studied in detail and will be constructed accordingly. No cost evaluation has been made.	The concept of using solar heated air to reduce the transmission losses of a building is very intriguing, especially for renovation
	11	СН	Improved design of technical components for the system	Compared to the first design and pilot installation an optimisation in the hydraulic system design was achieved by parameter simulation. This has lead to a set of basic design rules. There were no cost evaluated.	applications. It will be very interesting to learn about the operation experiences of these projects.
Daylight	12	US	Implementation of advanced window components for improved lighting concept	The design of the renovation project lead to expect electrical energy savings of approximately 30% in important parts of the building compared to the existing situation. This will be achieved with advanced but commercially available roof window systems.	It is important to note that improved use of daylight require advanced control systems.
	13	DK	Utilisation of heliostats for apartment buildings	Evaluations on a physical model have confirmed the predicted illumination values in the served spaces of approximately 400 lux in clear sky conditions.	Light guiding system work only when direct sunlight is available. Advanced control of the artificial light is required to take advantage of the natural light.

Table 8-5 (cont.): Main innovation goals and achieved results of the projects

9 Catalogue of Concepts and Systems

In the following section thirteen projects on the improvement of solar renovation concepts and systems followed under Subtask F are documented. Despite the large variety of the projects, it was the aim to report about the projects in uniform way.

The reporting scheme is divided into four blocks:

- **Specification:** Rationale for the intended concept and/or system, description of the concept and general information about the project
- Development: Status of the project and the involved partners
- Market: Market aspects of the involved services and products
- **Evaluation:** Report on the scientific and/or technical work of the project, including evaluation model and used evaluation tools, prototype or product description, results from calculations and/or measurement and final conclusion.

Concept 1 Advanced glazed balconies (D) Revision 8

Revision 8

9.1 Advanced glazed balconies (D)

Specification

Concept description

Glazed balconies are an attractive concept in the renovation of apartment buildings. Basic investigations concerning the energy efficiency effects and major benefits of glazed balconies were performed with IEA SHC Programme Task 20 Subtask A demonstration projects and simulation work within Subtask B. A next step for integrating glazed balconies into a whole renovation design with the apartment mechanical systems is the combination of a glazed balcony with a mechanical exhaust air system for the apartment. Ambient air is supplied to the apartment via the balcony and thereby preheated by solar gains or recovery of transmission losses from the apartment. This system approach increases the energy savings. On the other hand the air temperature in the balcony is decreased thereby reducing the value as additional space for the occupants. However, in this concept, airflow rates are adjusted to a low level for energy savings and thermal comfort reasons.

The concept will be analysed for a 14-story apartment building in Freiburg, Germany built in 1970 and renovated in 1998. Design and simulation work on energy savings, temperatures, cold bridges and daylighting aspects are ongoing at the Fraunhofer ISE, Solar Building Design Group in Freiburg, Germany.

Figure 1: View of the apartment building Krozinger-Str. 4 before renovation.

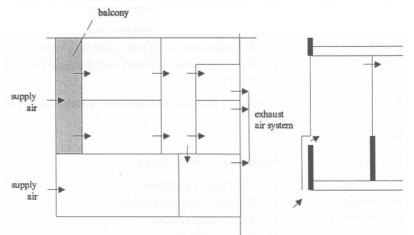


Figure 2: Typical apartment floor plan and airflow; section of balcony.

Concept 1 Advanced glazed balconies (D) Revision 8	IEA Solar Heating and Cooling Programme, Task 20 Solar Energy in Building Renovation Subtask F: Improvement of Solar Renovation Concepts and Systems
Specific energy savings/energy gain	 Space heating demand before renovation averaged over 4 years in all 84 apartments: 100 kWh/(m².a) Expectation for standard renovation combined with solar renovation is a heating demand reduction of 50%: approximately 50 kWh/(m².a)
Innovative aspects for renovation	 Economic system optimisation Evaluation of comfort and user acceptance aspects in ventilated balconies Cold bridge reduction compared to conventional renovation
Critical aspects	 Condensation of moisture from the apartment on the glazed balcony windows Maintenance of glazed balconies in "high rise" buildings Effects of wind pressure on the performance of the balcony / ventilation system
References	 IEA SHCP Task 20 report on STB IEA SHCP Task 20 report on STC BEW (CH) report: Sanierungsmassnahme Verglaste Balkone
Development	
	 Partly qualified concept Design phase, to constructed in 1998/99, completion in spring 1999 Monitoring and questionnaires results will be analysed to gain initial experiences from the combined approach of controlled ventilation with glazing a balcony
Involved Systems / Components	 Supply and exhaust air valves Central exhaust fan for 14 apartments Single or double glazed balcony glazing with non insulated frame Low cost "air collector" in the parapet of the balcony (proposal)
r	 Design of a new standard renovation for this building class for the building owner Whole building renovation approach High degree of integration of the occupants in the design process, the work on site and the system maintenance
involved in	 Manufacturers of ventilation systems Manufacturers of balcony glazing systems Building owner, architect, occupants, HVAC engineer, IEA SHCP Task 20 expert
Contact	Fraunhofer ISE, Dr. Karsten Voss, e-mail: karsten.voss@ise.thg.de
Market	
Building type	Residential housing blocks
reasons / Standard renovation process	 Cold bridge problems Hygienic aspects (mould) Facade degradation High energy demand Unattractive apartments Unattractive architecture

IEA Solar Heating and Cooli Solar Energy in Building Re Subtask F: Improvement of S		Concept 1 Advanced glazed balconies (D) Revision 8
Application potential	Renovation cases where the existing windows bell place due to sufficient quality and conditions.	hind the balcony can be kept in
Cost target	Renovation with glazed balconies and controlled costs of replacing the existing windows including controlled ventilation.	
Additional benefits	 High user acceptance due to the value of the External noise reduction, e.g. noise by wind The increased standard of the apartments hel quarters with high population density 	
Contractor/builder / additionally required experts	Metal facade companyHVAC engineer	
Application examples	 Multi-family building in Freiburg, Germany, Conventional renovated buildings and buildi same urban quarter (renovation district) 	
Concept Evaluation		
Model description	 Thermal modelling was done with a detailed of apartment of about 80 m² heated floor area (rebeginning of this description) including simple to a constant flow through the apartment induces Solar radiation normally absorbed on the balace overhangs and lost to the ambient can be used. Air change rates in the apartment are set to be changes per hour (equivalent to 30 – 50 m³ per 2-dimensional heat flow in the balacony was maccount the induced airflow by the ventilation simplification). Daylight calculations take into account the efficient of a solar set walls (balacony side walls). 	efer to the floor plan shown at the lified air flow modelling according ced by the ventilation system. cony surfaces by wing walls and d to preheat ventilation air. evels between 0.3 and 0.5 air er person per hour) nodelled without taking into a system (programme ffect of the optical properties of the
Parameters	Balcony glazing and frame typeVentilation an infiltration ratesOpaque insulation thickness	
Evaluation Criteria	 Thermal bridge effects Energy savings Thermal comfort Daylight level Condensation Noise 	
Evaluation Tool(s)	 TRNSYS 14.2(thermal building simulation) THERM (2-dimensional heat flow) Radiance (daylight) 	

Evaluation Results

Results Criteria 1

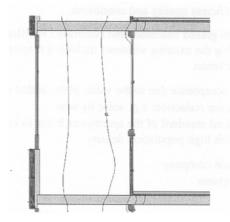


Figure 3: Isothermal lines.

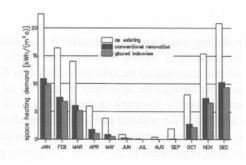
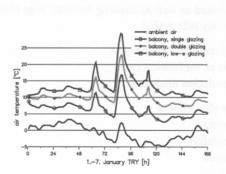
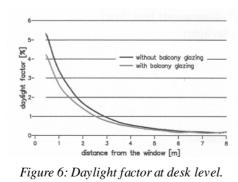




Figure 4: Monthly space heating demand.

Figure 5: Hourly air temperatures in the balcony with controlled ventilation.

Thermal bridges

The 2-D heat flow calculations show that the chosen balcony glazing (double glazing) can reduce the heat loss from the room to the ambient more (70% savings) than in the case of only replacing the windows with low-e coated double glazing (50% savings).

Note: The heat loss will increase when the air is supplied via the balcony.

Energy Savings

TRNSYS calculations (6-zone model including airflow) for a selected, south oriented apartment have shown an energy saving potential of 62% compared to the existing situation. The graph shows the calculated savings for the selected balcony glazing systems (double-glazing) including airflow compared to the situation before renovation.

Comfort

Temperatures below freezing may occur in the balcony when single glass is used as the balcony glazing system. Double-glazing can "guarantee" temperatures above freezing (including airflow). Introducing the airflow via the balcony decreases the temperature level, thereby decreasing the comfort level.

Daylighting (simulation results from Radiance)

The level of daylight is insufficient in the apartments with deep rooms and balconies attached (8 m). This situation worsens in the glazed balcony case (refer to the graph). Due to the wish of the occupants, balcony glazing will still be applied in these apartments.

Results Criteria 2

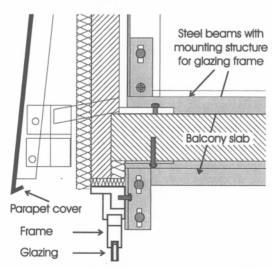
Results Criteria 3

Results Criteria 4

42

Concept 1 Advanced glazed balconies (D) Revision 8

onies (D) Revision 8


Results Criteria 5	Condensation
	Experiences from an initial full-scale system test in a selected apartment show that condensation may occur when using single glass or coated single glass (hard coating). This happens in the case of open windows from the apartment to the balcony, especially from the kitchen. The mechanical ventilation system with air supply via the balcony can not override this effect at low airflow rates. We suggested not glazing the balcony of apartments where the kitchen is attached to the balcony. Due to the occupant wishes, balcony glazing will still be applied.
Results Criteria 6	Noise
	The unintended use of the new space may create noise problems because balconies do not have a noise protection layer on the floor or on walls between balconies. Therefore problems with neighbours may occur as the balcony is more often used as integral part of an apartment. Noise problems resulting from unintended use is likely to increase as the thermal performance of the balcony increases (low-e glass, thermally broken frames, etc.).
Conclusions	The chosen building in Freiburg, Germany is renovated in 1998/99 according to the findings during the concept phase. The specific renovation investment costs are assumed to be lower compared to similar projects in the same urban quarter with a conventional renovation approach. The most important aspect is the high user acceptance for the renovation with glazed balconies. Experiences will show if the high expectations of the occupants will be fulfilled. Glazing the balconies instead of removing the existing windows allows renovation without work inside the apartments. This is a practical advantage so that the renovation schedule will not need to be co-ordinated with occupant schedules.

Component Evaluation

Balcony glazing

Steel reinforcement

The selected balcony glazing for the project is a double glazing (not low-e) with a metal frame <u>without</u> thermal separation.

The existing balcony structure was insufficient to bear the additional wind load of the new glazing. Thus, a steel reinforcement was necessary to anchor the glazing frame on facade.

Reinforcement was achieved using horizontal steel beams in the floor and on the ceiling corners of every balcony.

Figure 7: Horizontal section of the balcony parapet with load bearing structure.

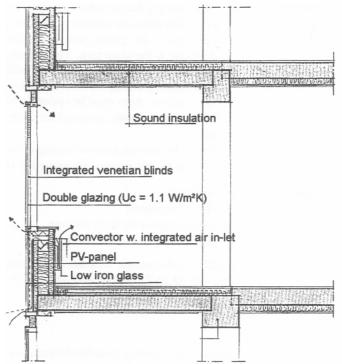
User aspects

- Operation
- Use of the balcony
- Maintenance, cleaning
- Instruction of the tenants

Concept 1 Advanced glazed balconies (D) Revision 8	IEA Solar Heating and Cooling Programme, Task 20 Solar Energy in Building Renovation Subtask F: Improvement of Solar Renovation Concepts and Systems
Cost evaluation	roughly equal to the conventionally renovated buildings in the same quarter About E 80 per m^2 floor area are invested in the renovation of the balcony including the folding glazing, the insulation of the parapet and the supporting metal construction (23% of the budget). This is equal to an investment of typically E 7000 per apartment.
Conclusions	constructing vented glazed balcony systems should focus on specific building
	ventilation system compared to the situation with a glazed balcony without ventilation air preheat only was not evaluated explicitly. (Because the exhaust ventilation system was required anyway, such an option was not the customer's foremost interest.)
	by decreasing the air temperature. This fact was not considered in the beginning of the studies and was found as a disadvantage compared to the unvented balcony.
·	An unresolved issue is the problem of the function of the balcony as a smoking area. (With changing habits and increased health concerns, the balcony becomes the last resort for smokers in the apartments.) Occupants must prevent smoke from entering the apartment by opening the balcony glazing if and when

the balcony area is used as a smoking zone.

9.2 Advanced glazed balcony (DK)


Specification

Concept description

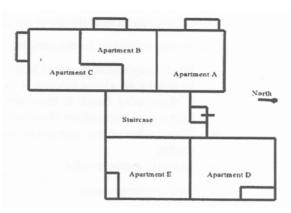
In this study, the advanced glazed balconies are designed in a way that make them sturdy against unintended use such as heating the balconies individually with small air heaters. This is achieved by using gas filled low-e double glazings and by insulating the parapets.

Studies from the pre-design phase show that designs with large glazing areas in the South facade are attractive. The analyses indicate that because of the very low U-value of the glazings (U = $1.15 \text{ W/(m}^2\text{.K})$) substantial energy savings will still be possible. This holds even if using very large glazed areas (up to 85% of the facade area of the balcony). For less insulating glazings, such large glazing areas will mean that the possible energy savings are reduced significantly when the glazing area increases above 50% of the facade area of the balcony.

In connection to the advanced glazed balconies, ventilated solar walls are integrated in the parapet. These are used for preheating the ventilation air before it enters the living area. The design of these solar walls is very simple as the fresh air just flows through an air gap between a dark cladding of the parapet and a covering layer of glass. Thus, the ventilated solar walls are established almost without any extra construction costs compared to the insulation and covering of the parapet which will be made anyway. Also the control of the airflow is very simple as this is regulated by the centrally controlled exhaust air system. In cold periods with only very small solar gains the fresh air will be preheated in the radiator integrated fresh air in-lets.

Figure 1: Vertical cross section of advanced glazed balcony.

Specific energy savings/energy gain


Concept 2 Advanced glazed balcony (Dk Revision 8	() IEA Solar Heating and Cooling Programme Task 20: Solar Energy in Building Renovation Subtask F: Improvement of Solar Renovation Concepts and Systems
Innovative aspects for renovation	 Optimised glazing types and glazing areas Combinations with exhaust air system. Combinations with ventilated solar walls Optimised design of advanced glazed balconies that are sturdy against unintended use.
Critical aspects	 <i>Parapet:</i> Elimination of cold bridges, leaving the opportunity open for air inlets, piping for water based system and cabling for PV-systems. <i>Glazing part:</i> - 75% of the window area must be operable.
References	 IEA SHCP Task 20 reports and brochures "Helhedsorienteret bygningsrenovering med solenergi – Pilotprojekt Engelsby, Flensburg" (working title) by Staermose & Isager Architects, Esbensen Engineers, Birch & Krogboe Engineers. Published in Summer 1999, in Danish.
Development	
Development status	 Construction completed The project was awarded with a first price in a competition (Solar '99) for exemplary solar energy projects in Germany.
Involved Systems/Components	 Highly insulated glazings Simple ventilated solar wall Radiator integrated fresh air in-lets Demand controlled ventilation
Required technical improvements / development focus	 To develop a design, which provides a very slim framing system for the glazing part minimising the amount of cold bridges and still providing a high degree of openness of the glazed part. Approximately 75% of the window area must be openable at the same time. This is partly due to fire regulations (escape routes) and the wishes from the tenants of still being able to enjoy the qualities of an open balcony during the summer period. To make it easy for the tenants to clean the windows, these must be opened inwards. To ensure thermally insulated air inlets for the radiator integrated fresh air inlets. Piping for the water based heating system (integrated in the parapet). Cabling for PV-systems (integrated in the parapet).
Type of companies involved in development	 Architect HVAC engineers Technological research institute Facade system manufacturer
Contact	Olaf Bruun Jorgensen, Esbensen Consulting Engineers, Tel: +45 33 26 73 00, fax: +45 33 26 73 01, E-mail: o.b.joergensen@esbensen.dk
Market	
Building type	Multi storey housing, detached houses, row houses etc. (renovation and new build)
Main renovation reasons / standard renovation process	 High energy demand Dissatisfying air quality Cold bridges Moisture damages Facade degradation Noise problems
Application potential	About 10 to 15% of the existing housing stock (multi storey housing) may benefit from this technology. The major part of the building stock being renovated is old multi storey housing. It is estimated that up to about 15% of the housings being

renovated (- 33 000 apartments), technically, and from an energy saving point of view, might benefit from the use of advanced glazed balconies.

Cost target	The average cost target for the complete glazed balcony was \pounds 6 700 per balcony.
Additional benefits	 When using advanced glazed balconies, the living area can be increased either by heating the glazed balcony or by removing the existing facade. A removal of the existing facade is especially attractive when the facade is made from lightweight constructions like wood or plastic. Added value of the apartments, making them more attractive to the renting market. Increased aesthetic value.
Contractor/builder/ additionally required experts	 Facade entrepreneurs Architects HVAC engineers
Application examples	 Engelsby (BIG Heimbau AG, housing company), Flensburg, DE. Renovation of two tower blocks (80 apartments) part of EU DG XVII targeted THERMIE project "SHINE" – Engelsby. Constructed 1998. osterbo (Osterbo housing company), Vejle, DK. Renovation of 104 apartments. THERMIE project "FLEXREN"). Will be constructed during 2000.
Modelling	
Model description	The buildings are of a size and form, which is typical for a lot of housing areas from the 60's and 70's. A special problem for these schemes is their image. The buildings are in great need of renovation due to high energy demand as well as a very poor indoor climate (Sick Building Syndrome) which makes the apartments less attractive for the rental market. The two tower blocks are situated in Engelsby, which is a part of Flensburg in Germany. The buildings are constructed in 1966. External walls consist of 24 cm sand-lime brick with an exterior facade cladding of Eternit plates and an internal surface of gypsum boards. Only the two lower floors of the buildings are insulated (50 mm). This insulation however, has collapsed. The existing heating system is district heating (Combined Heat and Power) from the City of Flensburg (coal based) with water based radiators. Domestic hot water is preheated with roof mounted solar collectors. The apartments are by a demand controlled moisture regulated ventilation system (exhaust from kitchen and bath). The average apartment size is 69 m ² . The balconies are facing East, South and West and are partly "inside" the facade, partly "outside" the facade. All balconies are 4,8 m ² .
	Building element Ext. walls Int. walls Ceiling Floor Windows
	Before renovation 1.35 2.0 0.6 2.6 2.75 (only balconies)
	After renovation0.32.00.32.61.1 – 2.2The glazings for the balconies are gas filled double-glazings with low-e coating. The light transmittances and the g-values for the glazing are 0.75 and 0.59. The glazing percentage for the balconies is 55%.The potential savings of using different glazing types for different insulation levels are analysed for different heating scenarios. The simulation model used is the dynamic building simulation tool Tsbi3C. Similarly, evaluations of the thermal and

are analysed for different heating scenarios. The simulation model used is the dynamic building simulation tool Tsbi3C. Similarly, evaluations of the thermal and visual comfort conditions have been carried out using different dynamic and ray tracing simulation tools.

Figure 2: Floor plan for the different apartments.

	<i>Figure 2: Floor plan for the different apartments.</i>
Parameters	During the simulations the following parameters were varied:
	<i>Glazing types</i> (U-value, light transmittance, g-value) Four different glazing types were evaluated: Single glazing, no framing, no sealing (6.0 W/(m ² .K), 91%, 87%) Single glazing, standard framing (6.0 W/(m ² .K), 91%, 87%) Double glazing, standard framing (2.9 W/(m ² .K), 82%, 76%) "Energy" glazing (1.1 W/(m ² .K), 79% 59%)
	<i>Insulation level</i> Three different insulation levels were evaluated: No insulation Insulation of parapet between living room and balcony 120 mm insulation of parapet of balcony
	<i>Air changes</i> Two air changes were evaluated: Standard building code (35 I/s - 0.72 h Humidity controlled ventilation (three levels 20 l/s, 60 l/s, 10 l/s, average -0.41 h ⁻¹)
	Orientation Three orientations and balcony types were modelled: East ("inside" the facade) South ("inside" and "outside" the facade) West ("outside" the facade)
	"Use of balcony" 11 scenarios of the use of the balconies were modelled: No heating of the balconies Heating in week-ends (9:00 – 18:00 or $14:00 - 22:00$ or $18:00 - 22:00$) Heating on week days (9:00 – 18:00 or $14:00 - 22:00$ or $18:00 - 22:00$) Heating all week (9:00 – 18:00 or $14:00 - 22:00$ or $18:00 - 22:00$) Heating of the balconies 24 hours per day during the heating season
Evaluation Criteria's	 Energy savings Moisture content in facade and in indoor air Thermal comfort Daylight level Noise level (only from adjacent tenant as traffic noise is very limited)
Evaluation Tool(s)	Tsbi3CAdeline/RadianceDAYLIGHT

Concept 2 Advanced glazed balcony (DK) Revision 8

Concept Evaluation

Results Criteria 1 – Energy demand and savings

Heating demand and savings per apartment for different glazing types:

Heating demand	Not heated balcony			Heated balcony (heated for 24h per day)		
Glazing system	kWh/a	kWh/(m².a)	savings	kWh/a	kWh/(m².a)	savings
l layer of "open" glass, insulated back wall	2 497	49	27 %	10 922	192	- 220 %
1 layer of glass with non-insulated parapet	2 622	52	23 %	6 264	110	- 83 %
Gas filled low-e double glazing with insulated parapet	2 078	41	39 %	2 446	3	28 %
Double glazing with insulated parapet	2 360	46	31 %	3 724	65	-9%
Double glazing with non-insulated	2 683	53	22 %	7 735	136	- 126 %

The largest energy savings are achieved when using the design with "energy" glazings and insulation of the parapets. This is the case for the unheated as well as for the heated balconies. However, this design is also by far the most expensive design. For the unheated balconies, even the design with a very "open" glazing offers significant savings. This is due to the solar gains but also due to the insulation of the parapet between the balcony and the living room next to it.

The possible energy savings do more or less not vary with the glazing percentage. Savings for 15% glazing are almost identical to the possible savings for 75% glazing. Therefore, the glazing areas in the balconies are quite high (-65%).

From the different scenarios for heating the balcony it is seen that even for partly heating of the balconies, there is a risk of increasing the energy demand for space heating and ventilation by up to 100% instead of providing energy savings. The only design that always provides energy savings is the design using windows with gas filled low-e double-glazing and insulated parapets. Even when heating such balconies, the energy demand for space heating is lower than 72% of the heating demand before glazing the balcony.

The reduction of the relative humidity from adding the advanced glazed balcony is illustrated below.

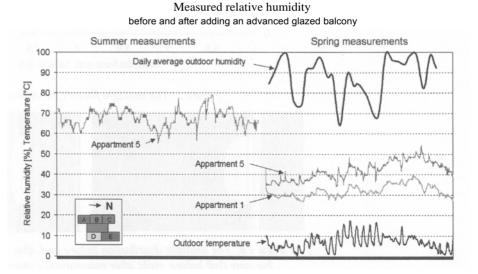


Figure 3: Measured humidity levels in apartments before and after renovation in apartment A and D (see corresponding floor plan of figure 2).

Summer measurements are made before adding the advanced glazed balcony. Spring measurements are made after adding the glazed balcony.

Results Criteria 2 – Moisture content and relative air humidity

Results Criteria 3 — Thermal comfort

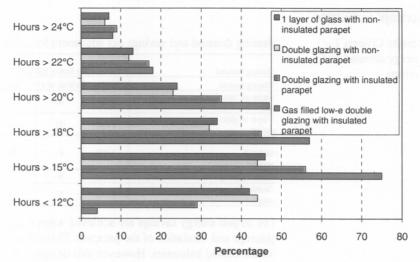
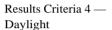



Figure 4: Distribution of the room temperature during the heating season depending on the glazing type and insulation level of the parapet (simulations).

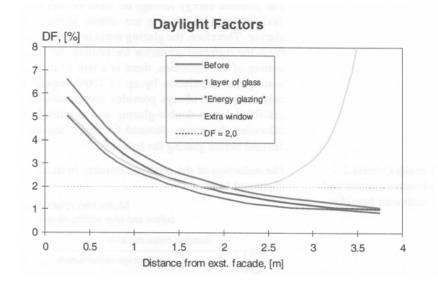
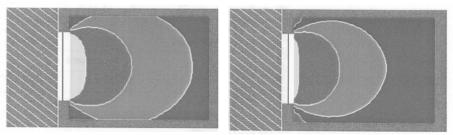
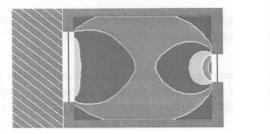



Figure 5: The daylight factors for different glazings.


Figure 6: The daylight distribution before and after the adding of the glazed balcony (left before, right after renovation; contour levels see figure 7).

It is seen that the daylight level is reduced significantly, but also that the daylight level was quite low even before adding the glazing on the balcony.

Furthermore, it is seen that the daylight is distributed more evenly after adding the glazed balcony.

As a consequence, a new window was added to some of those rooms that had only one window before the renovation.

Concept 2 Advanced glazed balcony (DK) **Revision** 8

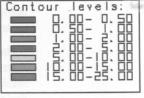


Figure 7: Daylight distribution after adding a glazed balcony and an extra window.

As expected, it is seen that the daylight level is increased significantly compared to the situation before adding the glazed balcony.

Result Criteria 5 -No detailed studies of the noise level have been made yet. The results will mainly be reactions from the tenants.

> The average cost target for the complete glazed balcony was \pounds 6 700 per balcony. This target was reached when implementing the glazed balcony in the renovation of the demonstration tower block during 1998. The client considers the cost satisfying.

From the analyses it is seen that the risk of increasing the energy demand is high when using poorly insulated glazed balconies. This is due to the risk of unintended use such as heating the balcony. This risk is partially avoided when using gas filled low-e double glazings and insulating the parapet of the balcony.

Energy

Noise level

Conclusions

Cost evaluation

From the analyses, two designs are recommended:

- For the balconies that are placed "inside" the facade, the design with "energy" glazing and insulation of the external parapet is recommended. As this design will be very sturdy against unintended use such as heating because of the high insulation level and because heating the balcony will still offer significant energy savings for space heating and ventilation.
- For the balconies that are placed "outside" the facade, the design with the very "open" glazing is recommended. This design will also be very sturdy against unintended use because heating of the balcony will be difficult due to the very open design. Technically, these balconies would also benefit from the highly insulated solution but because of the large glazing areas such a design might be too expensive.

Moisture and relative humidity

From preliminary monitoring it is seen that the relative humidity on the balconies and in the apartments will be decreased significantly. It should be noted that these apartments are also provided with a demand controlled moisture regulated exhaust air ventilation system, which is the main reason for the decreased moisture content of the indoor air. However, the glazed balcony will also lead to an effective drying out of the moisture-damaged facades and concrete slabs at the balconies.

Thermal comfort

Simulations show that the thermal conditions in the balcony and in the apartments will be very attractive for the design used (insulated parapets and insulating glazings): The temperatures in the balcony during the heating season will be very pleasant and overheating during summer is avoided by opening the balcony. From previous pilot project it is known that the tenants are very pleased by the new advanced glazed balconies.

Daylight

As a result of the reduced amount of daylight in the rooms next to the balconies especially in the East facing glazed balconies - it is recommended to take measures to increase the daylight level. In this case the best solution was to add a new window in the West facing exterior wall of this room. As the daylight level even

before the renovation was quite poor in this room, the building owner as well as the tenant considered this a very attractive solution.

Noise

There have been no experiences about noise problems yet. Because of the noise insulation that was installed, no noise problems are expected, as this part of the design is identical to known standard designs for footfall sound insulation..

Component Evaluation

Description component

For the balconies that are placed "inside" the facade the design with the gas filled low-e double glazings and insulation of the external parapet is used. The insulation is covered by sand blown glass. The windows are sliding and have an airtight sealing (right hand side of the building view of figure 9).

For the balconies "outside" the facade the design with 1 layer of glass is used. The parapet between the balcony and the living room is insulated. The parapets of the balcony glazing are made of sand blown glass. The windows are sliding and there are and open air gap between each glass pane.

In this specific project, neither ventilated solar walls nor PV-panels in the parapets are used.

Figure 9: Picture of installed advanced glazed balconies, Engelsby – Flensburg.

Evaluation Results	In general the targets that were set up regarding price, energy savings, comfort improvements and building integration have been achieved
Cost evaluation	The average cost target for the complete glazed balcony was €6 700 per balcony. This target was reached when implementing the glazed balcony in the renovation of the demonstration tower block during 1998. The client considers the cost satisfying. Even though comprehensive renovations have been carried out, it was not required to increase the rent for the tenants.
Conclusion	The concept development and the implementation, demonstration and evaluation of

on 8

the concept documents that it is possible to design cost-effective and architecturally attractive advanced glazed balconies for building renovation. It shows also that this measure provides significant energy savings, increased thermal and visual comfort, improved air quality and an effective protection against degradation of the building envelope.

IEA Solar Heating and Cooling Programme Task 20: Solar Energy in Building Renovation Subtask F: Improvement of Solar Renovation Concepts and Systems

Revision 10

Concept 3

9.3 Advanced ventilation strategy for glazed balconies (NL)

Specification

Concept description

Glazed balconies reduce transmission losses from an apartment because of the additional glass layer(s) used to enclose the balconies. Solar radiation is captured inside the glazed balcony or passes through to the adjacent space. Additional energy savings can be achieved if ventilation air is preheated using the solar radiation in the glazed balcony area and transmission losses within the glazed balcony are recovered.

This paper focuses on the ventilation strategies. Preheating ventilation air in glazed balconies requires a ventilation concept of the whole apartment: most ventilation air should enter through the glazed balcony by optimising the position of the vents in the facade. The concept is based on depressurising the apartment using mechanical exhaust ventilation in the bathroom, toilet and kitchen. Vents that operate independently of wind pressure limit the airflow above 5 Pa

pressure difference. If there is a pressure difference greater than 5 Pa, the vents limit the fresh air supply.

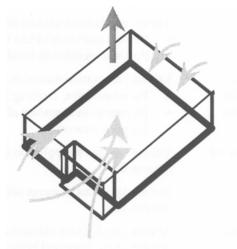


Figure 1: Schematic of the airflow through the apartment: intake by vents in the walls and the balcony and the extraction by a central exhaust system.

Specific energy savings/energy gain	The total saving of an optimised glazed balcony using preheated ventilation air in glazed balconies and application of low-e glazing is up to $30 \text{ kWh/(m}^2.a)$ in an average apartment of 70 m ² .
Innovative aspects for renovation	 The innovative aspects are Vents that operate independently from wind pressure will limit the fresh air supply. The concept is less dependent on user behaviour because bedrooms can be ventilated without disturbing the ventilation concept.
Critical aspects	 Critical aspects are Achieved air tightness of renovated buildings Distribution of vents over facades and glazed balcony Type of glazing in glazed balcony and existing facade.
References	 Project Catharinaland in Den Haag, The Netherlands (glazed balconies). Project Reitse Hoeve in Tilburg, The Netherlands (glazed balconies). Manufacturer information wind-pressure independent vents. Subtask B contribution: development of advanced glazed balconies.

Development	Solar	Heating & Co
Development status	Conceptual design: Evaluated prototype using existing products (glazed balconies, vents, mechanical ventilation) for the ventilation strategy.	
Involved Systems/Components	 Glazed balcony facade, single glass and low-e glazing. Airtight building envelope Vents that operate independently from wind pressure on all facades Mechanical exhaust ventilation system 	
Type of companies involved in development	 Energy consultants / HVAC engineer: specification of the ventilation strategy and product specification and commissioning Manufacturer: product specifications and technical requirements 	
Required technical improvements / development focus	 Key-improvements are Development of performance specifications for optimum use Sensitivity analysis: renovation practice and (in)dependence on user behaviour 	
Market		
Building type	 The concept is most relevant for Pre-war apartment blocks that need additional balcony-type spaces Post-war multifamily buildings that need to be upgraded 	
Main renovation reasons / Standard renovation process	 Relevant renovation reasons in relation to this concept are Poor ventilation, resulting in moisture problems and low indoor air quality Regeneration/upgrading of existing settlements Energy conservation 	
Application potential	The concept can be applied in multi-family apartment blocks that need to be renovated.	
Cost target	The market seems to accept added cost between ≤ 300 to ≤ 600 per m ² glazed construction.	
Additional benefits	Advantages of glazed balconies: solar gains and energy conservation; preheating ventilation air; improved indoor climate; solving maintenance problems; improved architectural image, enhanced utility of space; improved status of property.	
Contractor/builder/ additionally required experts	Energy consultants are required to specify and commission the ventilation concept.	
Application examples	W/E Consultants evaluated the concept of vents that operate independently from wind pressure in the EC2000 project-monitoring programme: Tax Office Enschede. The vents were successful in controlling the airflow through an office building. Institutes such as TNO are testing the vents themselves.	

Concept Evaluation

Model description

The apartment is a typical social housing apartment in the Netherlands. The floor area is 73 m². There are two bedrooms. The kitchen is open to the living room. Wall insulation is 0.37 W/(m².K). The glass U-value is 1.3 W/(m².K) and the window frame U-value is 2.4 W/(m².K).

The glazed balcony: Floor area is 5.4 m^2 . Ventilation openings at the top and at the bottom of the balcony facade are equally distributed. Single-pane windows are used in the glazed balcony. The balcony is not heated. Variations were calculated using double-pane and low-e glazing.

The glazed balcony system performance was modelled for one apartment. The climate situation is assumed to have:

- 20% of the time north wind
- 30% of the time south wind
- 20% of the time east wind
- 30% of the time west wind

The used vents itself are wind-pressure independent, therefore the infiltration rate is less dependent from wind-pressure.

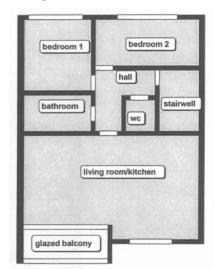
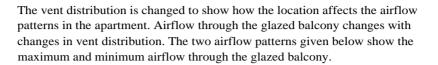



Figure 2: Floor plan for a typical apartment used for the evaluation model

Parameters	 Specific set of parameters: Distribution of vents over the facades and the balcony Variations in the overall air tightness of the building envelope Single, double and low-e glazing for glazed balcony
Evaluation Criteria's	 Evaluation criteria are Influence of the vent distribution on required ventilation rates in the apartment rooms Energy impact of balcony glazing types Energy impact of ventilation strategies
Evaluation Tool(s)	 Air change rate and ventilation distribution: MVRM 5.0 (multi-zone ventilation evaluation tool) Energy impact of balcony glazing type: Tsbi3 Energy impact of ventilation strategies: TRNSYS

Evaluation Results

Results Criterion 1 Influence of the vent distribution on required ventilation rates in the apartment rooms

Maximum airflow through glazed balcony

- Air tightness according to Dutch building regulations $[qv(10)=50 \text{ dm}^{3/s}]$
- Air through glazed balcony, 51% of total airflow, is approximately the largest airflow path for this apartment.

In order to achieve this flow pattern, the distribution of vents should be as follows. Vents to outside:

- Living room: 0% of total vents area
- Bedroom 1 north: 50% of total vents area
- Bedroom 2 north: 30% of total vents area
- Vents to glazed balcony:
- Living room: 20% of total vents area

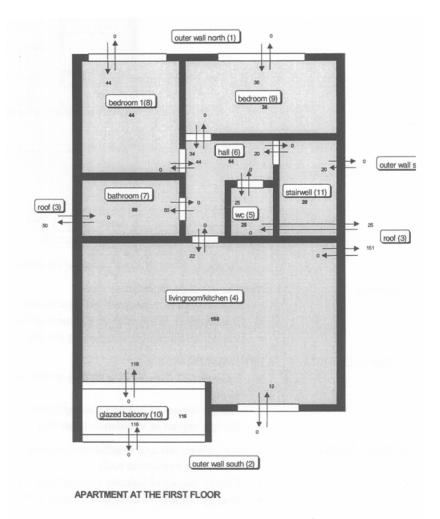


Figure 3: A ir distribution with **high** air flow input through balcony (figures in brackets are room numbers in the simulation model)

vision	10			
DANATION	AL END	1017	GDK	7
in Discover 1				

Table 1: Average airflow in/out apartment in m ³ /h with high air input through
balcony.

	total in		via vents	infiltration
glazed balcony	116	51%	80	36
living room	12		0	12
stairwell	20		0	20
bedroom	44		30	14
bedroom	35		19	16
	227		129	98

Ventilation according to the Dutch building regulations. This corresponds to the highest speed of the mechanical exhaust ventilation. The mechanical exhaust ventilation is three speeds.

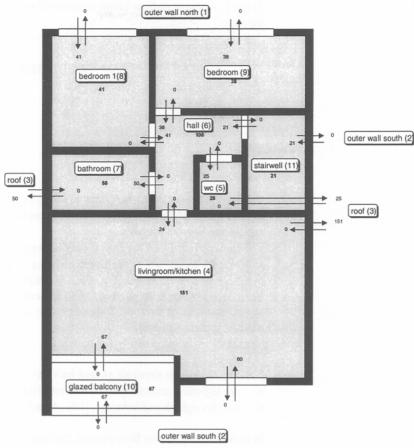
- Low speed: 4/9 of the Dutch building regulations
- Middle speed: 2/3 of the Dutch building regulations
- High speed: Corresponds to Dutch building regulations

The occupants use low speed 40% of the time, middle speed 50% of the time and high speed 10% of the time. This makes the average ventilation by mechanical exhaust system 140 m^3/h .

Minimum airflow through glazed balcony

- Air tightness according to Dutch building regulations $[qv(10)=50 \text{ dm}^3/\text{s}]$
- Air through glazed balcony: 30% of total airflow

In order to achieve this flow pattern, the distribution of vents should be as follows. Vents to outside:


- Living room: 30% of total vents area
- Bedroom 1 north: 35% of total vents area
- Bedroom 2 north: 30% of total vents area
- Vents to glazed balcony:
- Living room: 5% of total vents area

By changing the distribution of vents over the facades and glazed balcony, the percentage of the total airflow through the glazed balcony changes from 51% to 30%.

Similar calculations under improved airtightness conditions $[qv10 = 30 \text{ dm}^3/\text{s}]$ show no principal difference, given the fact that the size of the vents was enlarged to achieve the same overall ventilation rate. The ventilation through vents is enlarged and the infiltration is smaller.

Concept 3 Advanced ventilation strategy for glazed balconies (NL) Revision 10 IEA Solar Heating and Cooling Programme, Task 20

Solar Energy in Building Renovation Subtask F: Improvement of Solar Renovation Concepts and Systems

APARTMENT AT THE FIRST FLOOR

Figure 4: Air distribution with low air flow input through balcony (figures in brackets are room numbers in the simulation model).

Table 2: Average airflow in/out apartment in m^3/h with **low** air input through balcony.

te	otal in		via vents	infiltration
glazed balcony	67	30%	25	42
living room	60		46	14
stairwell	21		0	21
bedroom	41		25	16
bedroom	38		22	16
	227		118	109

Ventilation according to the Dutch building regulations. This corresponds to the highest speed of the mechanical exhaust ventilation. The mechanical exhaust ventilation is three speeds:

Low speed: 4/9 of the Dutch building regulations

Middle speed: 2/3 of the Dutch building regulations

High speed: Corresponds to Dutch building regulations

The occupants use low speed 40% of the time, middle speed 50% of the time and high speed 10% of the time. This makes the average ventilation by mechanical exhaust system 140 m 3 /h.

l exhaust system is

The amount of exhausted air under average use of the mechanical exhaust system is $140 \text{ m}^3/\text{h}$. The average amount of air which enters the apartment via the glazed balcony is $45 \text{ m}^3/\text{h}$. When the glazed balcony is optimised this increases up to 77 m³/h.

The above results show that it is possible to set the rate of air preheated by the balcony in a wide range without disturbing the airflow pattern in the apartment.

Varying the glazing design results in different heat demands:

Heat demand solar renovation

- Lowest for low-e glazing in whole apartment, either in glazed balcony or in the existing facade.
- If double-glazing is applied, the best position for installation is in the existing facade (balcony-interior).
- If low-e glazing is applied to aligned balconies, the best position for installation is in the new facade (balcony-ambient), because of warmer preheated air.
- If low-e glazing is applied to external balconies, the best position for installation is in the existing facade (balcony-interior), because of the decreased transmission losses.

Temperatures

- Average outdoor temperature about 5°C
- Single glazed balcony temperature about 12°C
- Low-e glazing in existing facade and single glazing in balcony reduces temperature to 11°C
- Low-e glazing in new facade and single glazing in existing facade increases temperature to 15°C.

Reduced transmission losses: standard renovation vs. optimised renovation with glazed balconies

The expected energy savings for transmission losses by optimised renovation with glazed balcony in comparison with standard renovation can be calculated with the following formula:

Qtrans = $\Sigma UA \times degreehours$ (U: U-value [W/(m2.K)], A: respective area [m])

Area of glazing and wall between existing facade and balcony: Aglazing = 4.5 m^2 Awall = 4.5 m^2

Before renovation: Uglazing = $5.0 \text{ W}/(\text{m}^2.\text{K})$

Standard renovation: Uglazing = 2.8 W/(m².K) Uwall = 0.32 W/(m².K)

Optimised renovation: Uglazing = $1.6 \text{ W}/(\text{m}^2.\text{K})$ Uwall = $0.32 \text{ W}/(\text{m}^2.\text{K})$

Only transmission losses of the glazing and wall between the balcony and the living room are looked at. The wall and the glazing, which is not adjacent to the balcony, are left aside for the calculation. In this way the influence of the balcony only becomes visible.

Transmission losses before renovation (without balcony): Qtran = 4.5 (5.0 + 2.0) x 71000 = 2244 kWh, i.e. 31 kWh/m²

Results Criterion 2

Energy impact of the balcony glazing

Transmission losses standard renovation (without balcony): Qtran = $4.5 (2.8 + 0.32) \times 71000 = 1016 \text{ kWh}$, i.e. 14 kWh/m^2

Transmission losses optimised renovation (with balcony): $Qtran = 4.5 (1.6 + 0.32) \times 41000 = 352 \text{ kWh}, \text{ i.e. } 5 \text{ kWh/m}^2$

Standard renovation reduced transmission losses by 84%, i.e. 26 kWh/m², in comparison with before renovation.

Optimised renovation reduces transmission losses by 65%, i.e. 9 kWh/m², in comparison with standard renovation.

Transmission losses through balcony:

	Unit	before	standard	optimised
Uglazing	W/(m ² .K)	5.0	2.8	1.6
Uwall	$W/(m^2.K)$	2.0	0.32	0.32
Losses	kWh/a	2244	1016	352

Results Criterion 3 Energy impact of the vent and airflow distribution The energy impact was not evaluated in detail, as no dynamic simulation tool allows straightforward simulation of energy flows specific to glazed balconies Calculations using Tsbi3 indicated the energy saving, as performed under Subtask B of IEA SHC Programme Task 20. The same procedure can be used with TRNSYS.

The physical effects that could not be modelled straightforward, are Solar radiation into the glazed balcony and through to adjacent space Air flows depending on wind direction and wind pressure.

Preheating ventilation air: standard renovation vs. optimised renovation with glazed balcony

The expected energy savings for ventilation losses by optimised renovation with glazed balcony in comparison with standard renovation can be calculated with the following formula:

Qvent = **K** x Flow rate x degreehours (K: density of air $[kg/m^3]$)

Apartment = 73 m^2

Before renovation: Outside air: Degreehours: 71000 Kh Flow rate = 140 m³/h

Standard renovation Outside air: Degreehours = 71000 Kh Flow rate = $140 \text{ m}^3/\text{h}$

Optimised renovation Outside air: Degreehours = 71000 Kh Flow rate = 63 m³/h Air from balcony: Degreehours = 41000 Kh Flow rate = 77 m³/h

Ventilation losses before renovation (without balcony): Qvent = $1.2 \times 140/3600 \times 71000 = 3324 \text{ kWh}$, i.e. 46 kWh/m^2

Revision 10

Concept 3

Ventilation losses standard renovation (without balcony): Ovent = 1.2 x 140/3600 x 71000 = 3324 kWh, i.e. 46 kWh/m²

Ventilation losses optimised renovation (with balcony): Ovent = $1.2 \times 63/3600 \times 71000 + 1.2 \times 77/3600 \times 41000 = 2541 \text{ kWh}$, i.e. 35 kWh/m²

Optimised renovation reduces ventilation losses by 25%, i.e. 11 kWh/m²

Ventilation losses through balcony:

	Unit	before	standard	optimised
Outside air	m³/h	140	140	63
Preheated air from balcony	m³/h	-	-	77
Losses	kWh/a	3324	3324	2541

Product information Some manufacturers of wind-pressure independent vents are :

> Heycop Systemen b.v. P.O. Box 416 3990 GE Houten The Netherlands Internet: www.hevcop.nl

Alusta b.v. P.O. Box 93 4870 AB Etten-Leur The Netherlands Internet: www.alusta.nl

BUVA b.v. Postbus 29019 3001 GA Rotterdam The Netherlands Internet: www.buva.nl

Conclusions

The energy performance of glazed balconies can be improved by applying low-e glazing either in the new balcony facade or in the existing facade, depending on the shape of the balcony and the required comfort conditions.

If low-e glazing is applied to aligned balconies, the best position for installation is in the new facade (balcony-ambient), because of warmer preheated air.

If low-e glazing is applied to external balconies, the best position for installation is in the existing facade (balcony-interior), because of the decreased transmission losses.

Preheating of ventilation air is the second option to improve the energy performance of apartments with glazed balconies:

Depressurising the apartment is essential to preheat ventilation air through glazed balconies.

Provided the external facades and other uncontrolled air inlets are air tight. ventilation rates can be controlled and limited by using wind pressure independent vents. Benefits of such vents are reduction of cross ventilation, good distribution of ventilation over opposite facades (less wind dependent) and maximisation of ventilation rates up to required levels.

The distribution of the vents over the facade is a means of controlling the percentage airflow through the glazed balcony, which can positively influence the use of solar gains in a glazed balcony.

It is possible to draw 30 - 50% of the fresh air through the balcony while keeping vents open on the opposite facade.

9.4 Glazed balconies and ventilation systems (CH)

Specification

Concept description

Glazed balconies have become an attractive renovation concept for apartment buildings.

Most of today's renovation concepts, for example new windows improve the air tightness of the building and reduce the air infiltration rate. This may lead to comfort problems that require correct manual window operation by the tenants or some sort of mechanical ventilation system. Especially in large apartment buildings and social housing, mechanical ventilation systems may be the most appropriate solution to prevent problems resulting from low air change rate and high humidity.

Glazed balconies in multi-family residential buildings provide the opportunity to use solar gains in the balcony for preheating ventilation air, which in turn increases the overall energy efficiency of the building.

Integrating glazed balconies into the mechanical ventilation systems was evaluated to optimise use of the solar gains of the glazed space. The most interesting concepts were:

- Glazed balcony design integrated with the central air exhaust system (A)
- Glazed balcony operates as a solar air collector combined with mechanical ventilation system with heat recovery (B).
- Glazed balcony design integrated with the central air exhaust system and a heat pump for domestic hot water or heating (C)

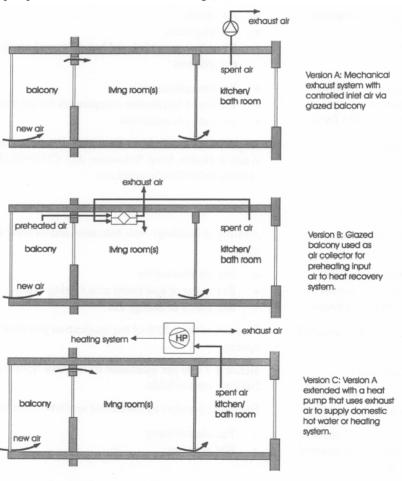


Figure 1: Principles of the different ventilation concepts.

Concept 4 Glazed balconies and venti Revision 6	IEA Solar Heating and Cooling Programme, Task 20 Solar Energy in Building Renovation Subtask F: Improvement of Solar Renovation Concepts and Systems
Specific energy savings/energy gain	Reduction of space heating demand of 20 to 35 kWh per m ² heated floor area per heating season.
Innovative aspects for renovation	Improved use of solar energy gains by combination of existing systems.
Critical aspects	 Reduces air temperature in glazed space. Possible air quality problems in the apartment (e.g. if the glazed space is used as a smoking area). Depending on the floor plan, air preheated in the glazed balcony may not circulate through all rooms in an apartment. Project specific problems may arise concerning installation space for air ducts, ventilation systems, etc. Controlled air tightness of the renovated space.
References	R. Ruch, Balkonverglasung and kontrollierte Wohnungsluftung, Dr. Eicher + Pauli AG, for Swiss Federal Department of Energy, 1998.
Development	
Development status	 Qualified concept and system models for version A, B and C Existing demonstration project for version C that is monitored during 1999
Involved Systems/Components	 Components for glazed space/balcony Mechanical ventilation systems, heat recovery systems and heat pumps Installation components (e.g. air valves, etc.)
Type of companies involved in development	 Architects HV engineers Manufacturers of glazed balconies and mechanical ventilation systems and components
Required technical improvements / development focus	 System optimisation Improved installation components for air systems Overall cost reduction
Contact	Roger Ruch, Dr. Eicher + Pauli AG, CH-4410 Liestal (Fax. +41 61 923 00 25) Andreas Haller, Ernst Schweizer AG, CH-8908 Hedingen (e-mail: andreas. haller @ eschweizer. ch)
Market	
Building type	Apartment buildings with balconies and existing or new mechanical ventilation systems
Main renovation reasons / Standard renovation process	 Facade renovation Extension of apartment area / living space Reduction of energy use
Application potential	Fraction of 20 – 30% of the application potential for glazed balconies / glazed spaces
Cost target	Below ≤ 1000 per apartment for air flow optimisation if ventilation system and balcony are available.
Additional benefits	Improved comfort by controlled air flow in the apartment
Contractor / builder / additionally required experts	Facade companyHV engineer

Project "Synergie", Wettingen, Switzerland (similar to version C); demonstration project of the Swiss Energy 2000 initiative

Application examples

Modelling

Model description variant evaluation

The energy demand of the different variants was evaluated using a simplified building model for static energy balance calculations:

Building	model	characteristics
Dunung	mouer	enter deter ibtieb

Components	U-value, g-value	Area	
Building wall:	0.2 W/(m ² .K)	869 m ²	
Windows:	1.6 W/(m ² .K)	144 m ²	
Wall to balcony:	1.1 W/(m ² .K)	155 m ²	
Windows room to balcony:	1.6 W/(m ² .K)	73 m ²	
Balcony wall:	1.9 W/(m ² .K)	53 m ²	
Balcony glazing	1.6 W/(m ² .K) g*(shading factor) = 0.275	208 m ²	
Characteristics of air system			
Air volume building:	2275 m ³		
Air change rate building:	0.3 h-1		
Air volume balcony:	258 m ³		
Air change rate balcony:	0.3 h-1 (during heating season)		
Efficiency heat recovery system: Coefficient of performance of heat	0.6		
ump: 4		1	

Parameters for variant evaluation

Evaluation Criteria

Evaluation Tool(s)

Proprietary tool based on static energy balance calculation

Reduction of heat energy demand

Economic aspects

No other parameters than the ventilation system were changed.

Model description for detail evaluation

A detailed evaluation for version A was conducted because this version has a good cost/performance ratio with low investment cost (see evaluation results). A simplified apartment model from the central part of the building was used. Room 2 is facing north, the balcony is facing south.

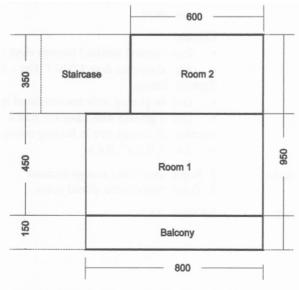


Figure 2: Floor plan of the detail evaluation model.

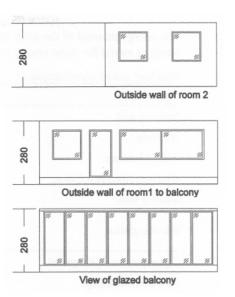


Figure 3: View of the relevant facade parts of the model for detail evaluation.

Component	U-value (W/m ² .K)	g-value	shading factor
Outside wall before renovation	0.99	1.244	
Outside wall after renovation	0.21		
Wall between room 1 and balcony	1.28	gel land	
Wall between rooms and staircase	2.19		1005010
Balcony glazing 1: double glazing and not insulated metal frame	2.80	0.76	0.85
Balcony glazing: low-e glazing and insulated metal frame	1.30	0.59	0.85

- Ventilation concept: glazed balcony with exhaust air system (version A)
- Ceiling, floor and side walls to adjacent apartments are assumed to be adjabatic
- Air temperature in the staircase is set constant to 12°C during heating season
- Air flow rate in glazed balcony equals 50% of air change volume of the apartment

Parameters

- Climate:
- Swiss central midland (degree days 12/20°C Oct May: 3 234 Kd)
- Alpine (degree days 12/20°C Oct May: 4 992 Kd) Type of glazing:
- Double glazing with non-insulated frame
- Low-e glazing with insulated frame
- Average air change rate in heating season
- 0.4 h⁻¹, 0.6 h⁻¹, 0.8 h⁻¹
- Evaluation Criteria1. Reduction of heat energy demand
- 2. Temperature in the glazed space

Evaluation Tool(s) TRNSYS 14.2

Evaluation Results

Reduction of heat energy demand

Cost evaluation (for a building similar

to the model description)

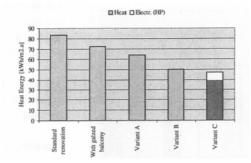


Figure 4: Heat energy demand before renovation was 200 kW per m² of heated floor area per heating season.

Ventilation version

The evaluation resulted in an additional heat energy demand reduction when the inlet air for an new or existing exhaust ventilation system comes through via the glazed balcony (version A). Versions B and C are almost equivalent in heat energy demand reduction. (Electricity for the heat pump counts twice; white part of bar for version C)

1997 m dr. 9990		Version A	Version B	Version C
Energy demand reduction	kWh/(m ² .a)	8	18	34
Annual savings Additional el. energy	kWh/a	34 000	74 000	140000 22'000
Cost per building unit				
Ventilation system Electrical installation Plumbing / heating		4 000	15 925 750 325	18 400 1 375 3 450
system		1 875	5 000	5 000
Master-builder		325	3 300	4 550
Various		325	5 000	6 875
Consulting				
Total per building unit	0.000-004-00444	6 525	30 300	39 650
Total investment (8 units)	Sector energies	52 200	242 400	317 200
Capital costs	Older Stranger	4 725	21 825	28 575
Electricity cost	2			2 500
Maintenance cost				
Total annual cost		4 725	21 825	31 075
Energy related part		80%	50%	50%
Energy related annual cost		3 780	10 912	15 550
Equivalent heat cost	□/kWh	0.110	0.147	0.110

Interest rate: 5% / life time: 15 years / electricity cost: 0.093

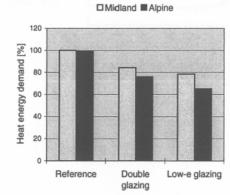


Figure 5: Heat energy reduction in function of climate (reference refers to double-glazing and no air preheating).

Climate and type of glazing

The high radiation levels in the alpine climate compensate for the lower ambient temperatures.

The benefit from using preheated air from the balcony increases for locations with high radiation.

A well-insulated balcony is also more beneficial in cold climates.

(Air change rate: 0.6 per hour)

Reduction of heat energy demand

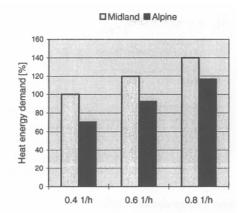


Figure 6: Heat energy demand dependent on air change rate of the apartment.

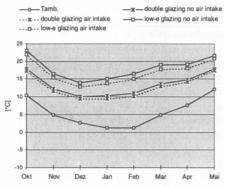


Figure 7: Monthly mean balcony temperatures for Swiss midland climate.

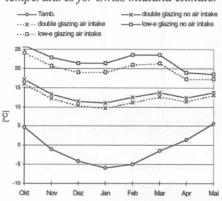


Figure 8: Monthly mean balcony temperatures for Swiss alpine climate.

Air change rate of the apartment

For all examples 50% of the ventilation air entering the apartment is assumed to enter through the glazed balcony.

The evaluation shows a linear dependence on the air change rate for the heat energy demand.

Double-glazing was assumed for the Swiss midland climate and low-e glazing with insulated aluminium frames was assumed for the alpine climate.

Climate and type of glazing

The temperature in the balcony with a low-e glazing and insulated frame system is on average 5°K higher than in the balcony constructed with double glazing windows.

The air intake through the balcony at a rate of 50% of the apartment's air change rate lowers the balcony temperature by an average of 1.5° K.

For the sunny alpine climate the monthly average balcony temperatures during the heating season are only slightly below 20°C if high quality glazing and frames are used.

The air intake from the balcony to the apartment lowers the air temperatures in the balcony between 2° K and 5° K.

Comfort / air temperatures in glazed balcony

A ir change rate

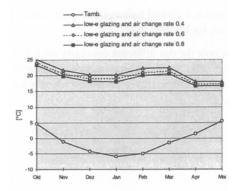


Figure 9: Balcony temperature depending on air change rate.

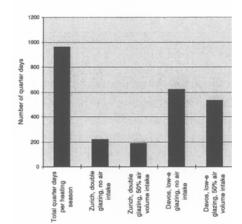


Figure 10: Number of quarter days with air temperatures above 18°C during the heating season.

The influence of the apartment air change rate on the average balcony temperature is moderate: about 0.5°K per 0.1 air change per hour.

However, this is also dependent on the air intake volume from the balcony (50% of the air change volume is assumed to come via balcony for the evaluation).

The air temperature reduction in the glazed balcony reduces the availability of the glazed balcony as an extended living space.

In a double glazed balcony in the Swiss midland climate the number of quarter days (6-hour periods) with average air temperatures above 18°C is reduced from 220 to 190 quarter days during the heating season.

In the alpine climate, the number of quarter days with temperatures above 18°C in a low-e glazed balcony is reduced from 620 to 530 quarter days.

Conclusions

The combination of glazed balconies with mechanical ventilation systems is an attractive concept to improve the solar energy gains from the glazed space. For apartments with central air exhaust systems, the controlled air intake from the balcony may reduce heat energy demand in the order of 20% compared with the situation of direct air intake from ambient.

Concepts with heat recovery systems reduce the heat energy demand by up to 50% compared with regular exhaust systems with ambient air intake. However, systems that preheat the fresh air by heat recovery do - to a certain extent - conflict with the solar preheating of the air in the balcony.

The potential of the heat demand reduction depends on climate, the balcony design, (orientation, area of glazing) and the characteristics of the glazing system for the balcony.

In renovation cases, difficulties may arise in controlling the airflow and supplying air from the balcony to the complete apartment. However, even with an air intake rate of 50% of the apartment's air change rate, substantial usage of the solar gains from the glazed balcony may be achieved.

All concepts result in a reduction of the balcony air temperature between 1.5° K to 5° K. This reduces the period during the heating season when the glazed balcony may be used as an additional living space from 30 to 100 quarter days (mornings or afternoons) per year.

For comfort reasons, a glazed balcony becomes unsuitable as a smoking zone and as a storage room for kitchen waste, etc.

The investment cost for the different concepts vary. For limited renovation budgets, the controlled air inlet for the exhaust system is usually the most appropriate concept, especially if the apartment building already has an installed central air exhaust system.

9.5 Static shading for TI wall heating systems (D)

Specification

Concept description

In 1996, the German company Sto introduced a composite transparent insulation (TI) system into the market. The system integrates the function of a solar mass wall with TI into the construction of a glued insulation and finish system for buildings. Its design is especially suitable for building renovation. A project of this type was part of Subtask C work and evaluated within Subtask E ("Villa Tannheim", Freiburg, Germany). The composite transparent insulation system is used till now without active shading device such as a venetian blind. The main reasons are architectural consistency with a conventional, non-transparent composite insulation and finish system and, of course, cost reduction. Therefore, its application to building facade retrofits was limited to less than 30% of the total facade area to minimise the summer solar gains. The system must be dimensioned so that overheating in summer is avoided.

Until recently, passive shading for solar gain control was not considered as an integral part of the composite TI system. An advanced concept may therefore consider **passive shading by architectural elements** on the facade. Such an approach decreases the summer solar gain but must be engineered so that at the same time they do no decrease wanted winter gains too much. Engineered shading elements on walls having a south orientation lead to improved summer comfort. Shading elements may exist (e.g. balcony plates) or may be added to the facade during the renovation. Properly sized overhangs on south orientations can be engineered to eliminate summer solar gains yet allow the desired amount of winter gains.

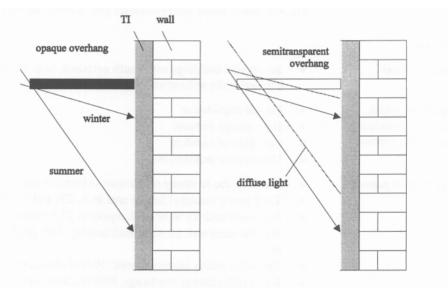


Figure 1: Principle of static shading by an overhang.Left: opaque overhangRight: selective overhang

- Reduction of the transmission losses of an external wall plus solar gains by wall heating: 30 50 kWh/(m².a) minus reduction by winter shading effect of the overhang.
- The objective of this advanced concept study is to determine reduction of winter solar gains and improvements for the summer comfort.

Innovative aspects for renovation

Specific energy

savings/energy gain

- Application on buildings with existing overhangs or wing wall type shading elements
- Improved summer comfort

	A
Critical aspects	Reduction of the winter solar gains, especially if existing architectural elements are used as passive shading devices
References	 IEA SHCP Task 20 brochure: Transparent Insulation in Building Renovation DBU report (DE): SchluBbericht Villa Tannheim, Fraunhofer ISE, TOS-1- 9709-VK-05, 1997 Diploma work at Fraunhofer ISE (DE): Einfluss statischer Verschattung auf den jahreszeitabhangigen Energiegewinn eines transparenten Wärmedämmverbund system. (Instyl Geing, 1990)
Development	
Development status	Quantified concept.Simulations performed at Fraunhofer ISE in 1998
Involved Systems / Components	Composite TI system (Sto AG)
Required technical improvements / development focus	Design guidelines describing the effect of static shading elements (opaque or semitransparent) on the solar mass wall system performance
Type of companies involved in development	TI system manufacturer (Sto AG)
Contact	Dr. Alexandra Raicu, c/o Fraunhofer ISE, e-mail: raicu@ise.fhg.de
Market	
Building type	• Residential buildings with south oriented , high density (> 1200 kg/m ³) external walls without existing insulation
Main renovation reasons / Standard renovation process	 Facade degradation High energy demand Low thermal comfort Unattractive architecture
Application potential	 Medium, due to strong restrictions in terms of orientation and wall material Total yearly insulated facade area in A, CH and D: 70 million m² per year South oriented: 25 % of total; equals to 17.5 million m² Suitable mass wall for solar wall heating: 30% of above; equals 5.25 million m². Unshaded during heating season: 10% of above, equals to 525 000 m² facade Walls with existing overhangs: 10% of above, equals to 52 500 m² facade Maximum TI coverage with: 40% of above, equals to -20 000 m² TI compound system
Cost target	No additional cost for situations with existing overhangs
Additional benefits	Increased summer comfort
Contractor/builder / additionally required experts	 Facade company installing the composite TI system Manufacturer for static shading elements (e.g. metal construction companies) Architect